【題目】袋內(nèi)分別有紅、白、黑球3,2,1個(gè),從中任取2個(gè),則互斥而不對(duì)立的兩個(gè)事件是(
A.至少有一個(gè)白球;都是白球
B.至少有一個(gè)白球;至少有一個(gè)紅球
C.恰有一個(gè)白球;一個(gè)白球一個(gè)黑球
D.至少有一個(gè)白球;紅、黑球各一個(gè)

【答案】D
【解析】解:從3個(gè)紅球,2個(gè)白球,1個(gè)黑球中任取2個(gè)球的取法有:
2個(gè)紅球,2個(gè)白球,1紅1黑,1紅1白,1黑1白共5類情況,
所以至少有一個(gè)白球,至多有一個(gè)白球不互斥;
至少有一個(gè)白球,至少有一個(gè)紅球不互斥;
至少有一個(gè)白球,沒有白球互斥且對(duì)立;
至少有一個(gè)白球,紅球黑球各一個(gè)包括1紅1白,1黑1白兩類情況,為互斥而不對(duì)立事件,
故選:D
寫出從3個(gè)紅球,2個(gè)白球,1個(gè)黑球中任取2個(gè)球的取法情況,然后逐一核對(duì)四個(gè)選項(xiàng)即可得到答案

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2位男生和3位女生共5位同學(xué)站成一排,若男生甲不站兩端,3位女生中有且只有兩位女生相鄰,則不同排法的種數(shù)是(
A.60
B.48
C.42
D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)在R上滿足f(x)=2f(2﹣x)﹣x2+8x﹣8,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是( 。
A.y=﹣2x+3
B.y=x
C.y=3x﹣2
D.y=2x﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班一天上午安排語、數(shù)、外、體四門課,其中體育課不能排在第一、第四節(jié),則不同排法的種數(shù)為(
A.24
B.22
C.20
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+2xf′(1),則f′(0)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=2|x+3|在(﹣∞,t)上是單調(diào)增函數(shù),則實(shí)數(shù)t的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax(a為常數(shù))的圖象與y軸交于點(diǎn)A,曲線y=f(x)在點(diǎn)A處的切線斜率為﹣1.
(1)求a的值及函數(shù)f(x)的極值;
(2)證明:當(dāng)x>0時(shí),x2<ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)的圖象的對(duì)稱軸為x=﹣4,且當(dāng)x≥﹣4時(shí),f(x)=2x﹣3,若函數(shù)f(x)在區(qū)間(k﹣1,k)(k∈Z)上有零點(diǎn),則k的值為(  )
A.﹣8或﹣7
B.﹣8或2
C.2或﹣9
D.﹣2或﹣8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二項(xiàng)式(1﹣3x)9的展開式中所有項(xiàng)的系數(shù)和為

查看答案和解析>>

同步練習(xí)冊(cè)答案