【題目】已知正三棱柱ABC﹣A′B′C′如圖所示,其中G是BC的中點,D,E分別在線段AG,A′C上運動,使得DE∥平面BCC′B′,CC′=2BC=4.
(1)求二面角A′﹣B′C﹣C′的余弦值;
(2)求線段DE的最小值.

【答案】
(1)解:如圖,

∵ABC﹣A′B′C′為正三棱柱,G是BC的中點,

∴AG⊥平面BCC′B′,以GB所在直線為x軸,以過G且垂直于BG的直線為y軸,以GA所在直線為z軸建立空間直角坐標(biāo)系,

則G(0,0,0),A(0,0, ),C(﹣1,0,0),B′(1,4,0),A′(0,4, ),

=(1,4, ),

平面B′CC′的一個法向量為 ,

設(shè)平面A′B′C的一個法向量為 ,

,取y=1,得x=﹣2,z=

,

∴cos< >= = =

∴二面角A′﹣B′C﹣C′的余弦值為


(2)設(shè)D(0,0,t)(0≤t≤ ),E(x,y,z),

,∴(x+1,y,z)=(λ,4λ, ),即x=λ﹣1,y=4λ,z=

∴E(λ﹣1,4λ, ), =(λ﹣1,4λ, ),

由DE∥平面BCC′B′,得 ,得λ=

=

當(dāng)t= 時, 有最小值 ,

∴線段DE的最小值為


【解析】(1)由題意畫出圖形,以GB所在直線為x軸,以過G且垂直于BG的直線為y軸,以GA所在直線為z軸建立空間直角坐標(biāo)系,求出平面B′CC′與平面A′B′C的一個法向量,由兩法向量所成角的余弦值求得二面角A′﹣B′C﹣C′的余弦值;(2)設(shè)D(0,0,t)(0≤t≤ ),E(x,y,z),由 ,結(jié)合DE∥平面BCC′B′把λ用含有t的代數(shù)式表示,然后求出 的最小值得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC. (Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:FC∥平面EAD;
(Ⅲ)求二面角A﹣FC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C所對邊分別是a、b、c,且cosA=
(1)求sin2 +cos2A的值;
(2)若a= ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) ,為了得到函數(shù)g(x)=sin2x的圖象,則只需將f(x)的圖象(
A.向右平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向左平移 個長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1的極坐標(biāo)方程為ρ=6cosθ,曲線C2的極坐標(biāo)方程為θ= (p∈R),曲線C1 , C2相交于A,B兩點. (Ⅰ)把曲線C1 , C2的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(Ⅱ)求弦AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙兩人每次射擊命中目標(biāo)的概率分別為 ,且各次射擊相互獨立,若按甲、乙、甲、乙…的次序輪流射擊,直到有一人擊中目標(biāo)就停止射擊,則停止射擊時,甲射擊了兩次的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣2cos2x﹣1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的對邊分別為a,b,c,已知c= ,f(C)=0,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種產(chǎn)品的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)成本y(萬元)有如下幾組樣本數(shù)據(jù):

x

3

4

5

6

y

2.5

3.1

3.9

4.5

據(jù)相關(guān)性檢驗,這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,通過線性回歸分析,求得到其回歸直線的斜率為0.8,則當(dāng)該產(chǎn)品的生產(chǎn)成本是6.7萬元時,其相應(yīng)的產(chǎn)量約是(
A.8
B.8.5
C.9
D.9.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均為正實數(shù),且滿足a+b+c=m,求證: ≥3.

查看答案和解析>>

同步練習(xí)冊答案