已知兩個(gè)不共線的向量
OA
,
OB
的夾角為θ,且|
OA
|=3.若點(diǎn)M在直線OB上,且|
OA
+
OM
|的最小值為
3
2
,則θ的值為
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:將|
OA
+
OM
|平方,利用向量模的平方等于向量的平方,列出關(guān)于a,θ的函數(shù),通過(guò)公式求出對(duì)稱軸,求出二次函數(shù)的最小值,列出方程,即可所求角.
解答: 解:設(shè)|
OM
|=a(a>0),
∵|
OA
+
OM
|2=
OA
2
+
OM
2
+2
OA
OM
=9+6cosθ•a+a2
對(duì)稱軸為a=-3cosθ
所以當(dāng)a=-3cosθ最小,
由9-18cos2θ+9cos2θ=
9
4
,
解得,cosθ=
3
2
或cosθ=-
3
2

即有θ=
π
6
θ=
6
,
故答案為:
π
6
6
點(diǎn)評(píng):解決向量模的問(wèn)題,一般利用向量模的平方等于向量的平方,再利用向量的運(yùn)算法則展開即可.在利用向量的數(shù)量積公式時(shí)有定注意向量夾角的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=log3(5-3x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x))滿足(x+2)=
1
f(x)
,若f(1)=2,則f(99)=( 。
A、1
B、3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(
3
sinx-cosx)cosx的值域是( 。
A、[-
3
2
,
1
2
]
B、[-
3
2
,0]
C、[-
3
,
1
2
]
D、[-
3
,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在橢圓
x2
a2
+
y2
8
=1(a>0)中,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),B、D分別為橢圓的左、右頂點(diǎn),A為橢圓在第一象限內(nèi)的任意一點(diǎn),直線AF1交橢圓于另一點(diǎn)C,交y軸于點(diǎn)E,且點(diǎn)F1、F2三等分線段BD.
(Ⅰ)求a的值;
(Ⅱ)若四邊形EBCF2為平行四邊形,求點(diǎn)C的坐標(biāo);
(Ⅲ)當(dāng)S△AF1O=S△CEO時(shí),求直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[0,
π
2
],f(x)=
a
b
-2λ|
a
+
b
|的最小值是
 
,則實(shí)數(shù)λ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

O是坐標(biāo)原點(diǎn),P是橢圓
x=3cosϕ
y=2sinϕ
(ϕ為參數(shù))上離心角為-
π
6
所對(duì)應(yīng)的點(diǎn),那么直線OP的傾斜角的正切值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OZ
OZ1
關(guān)于x軸對(duì)稱,
j
=(0,1),則滿足不等式
OZ
2
+
j
ZZ1
≤0的點(diǎn)Z(x,y)的集合用陰影表示為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求和:1+3a+5a2+7a3+…+(2n-1)an-1(a≠0).

查看答案和解析>>

同步練習(xí)冊(cè)答案