已知直線l:Ax+By+c=0,n=(A·B)

求證:n⊥l

答案:
解析:

  證明:設(shè)(x0,y0)為l的方程的一個解,則

  Ax0+By0+C=0(*).

  對l的方程和(*)式兩邊作差,整理得

  A(x-x0)+B(y-y0)=0.

  由向量垂直的條件,得向量n=(A,B)與向量(x-x0,y-y0)垂直,由于動點(x,y)的集合就是直線l,所以n⊥l


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:ax+by=1,點P(a,b)在圓C:x2+y2=1外,則直線l與圓C的位置關(guān)系是( 。
A、相交B、相切C、相離D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:ax+y=1在矩陣A=
.
12
01
.
對應(yīng)的變換作用下變?yōu)橹本l′:x+by=1.
(Ⅰ)求實數(shù)a,b的值;  
(Ⅱ)若點p(x0,y0)在直線上,且A
.
x0 
y0 
.
=
.
x0 
y0 
.
,求點p的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:Ax+By+C=0(A,B不全為0),兩點P1(x1,y1),P2(x2,y2),若(Ax1+By1+C)( Ax2+By2+C)>0,且|Ax1+By1+C|<|Ax2+By2+C|,則直線l( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:Ax+By+C=0,其中A、B、C均不相等且A、B、C∈{1,2,3,4,5},在這些直線中與圓x2+y2=1無公共點的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:ax+y-2
2
=0(a∈R),圓C:x2+y2=1
,若過l上任一點P可作圓的兩條切線,設(shè)切點為A、B.
(1)求a的范圍;
(2)若當(dāng)兩條切線長最短時,他們的夾角是60°,求a的值.

查看答案和解析>>

同步練習(xí)冊答案