已知函數(shù)的圖象的一個最高點為與之相鄰的與軸的一個交點為
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)減區(qū)間和函數(shù)圖象的對稱軸方程;
(3)用“五點法”作出函數(shù)在長度為一個周期區(qū)間上的圖象.
(1)
(2),.
(3)見解析
解析試題分析:⑴有最高點與相鄰軸交點可知值,即,代入最高點求得值(注意盡量避免代入零點,若代零點需根據(jù)走向確定是的奇數(shù)倍還是偶數(shù)倍;(2)利用整體思想,;(3)找特殊點即使得為最值和零點的的值.
試題解析:⑴由題意,,,所以,所以,. 2分
所以,將代入,得,
因為,所以, 4分
所求函數(shù)解析式為. 5分
⑵由,得,
所以函數(shù)的單調(diào)減區(qū)間是. 7分
由(Z),得,
所以函數(shù)圖象的對稱軸方程為. 9分
⑶
1)列表
13分x 0 y 0 2 0 2
2)描點畫圖
16分
考點:1.求三角函數(shù)解析式;2.三角函數(shù)的性質(zhì);3.五點作圖法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2sin x(sin x+cos x).
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)在給出的平面直角坐標系中,畫出函數(shù)y=f(x)在區(qū)間上的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,設(shè)函數(shù).
(1)求函數(shù)在上的單調(diào)遞增區(qū)間;
(2)在中,,,分別是角,,的對邊,為銳角,若,,的面積為,求邊的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,-π<φ≤π)在x=處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=sin ωx·cos ωx+cos 2ωx-(ω>0),其最小正周期為.
(1)求f(x)的解析式.
(2)將函數(shù)f(x)的圖象向右平移個單位,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間上有且只有一個實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com