(2012•懷柔區(qū)二模)已知不等式組
x+y≤2
x-y≥-2
y>1
表示的平面區(qū)域為M若直線y=kx-3k+1與平面區(qū)域M有公共點,則k的取值范圍是
[-
1
3
,0)
[-
1
3
,0)
分析:本題考查的知識點是簡單線性規(guī)劃的應(yīng)用,我們要先畫出滿足約束條件
x+y≤2
x-y≥-2
y>1
的平面區(qū)域,然后分析平面區(qū)域里各個角點,然后將其代入y=kx-3k+1中,求出y=kx-3k+1對應(yīng)的k的端點值即可.
解答:解:滿足約束條件
x+y≤2
x-y≥-2
y>1
的平面區(qū)域如圖示:
因為y=kx-3k+1過定點A(3,1).
所以當(dāng)y=kx-3k+1過點B(0,2)時,找到k=-
1
3

當(dāng)y=kx-3k+1過點(1,1)時,對應(yīng)k=0.
又因為直線y=kx-3k+1與平面區(qū)域M有公共點.
所以-
1
3
≤k<0.
故答案為:[-
1
3
,0).
點評:在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗證,求出最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)y=(sinx+cosx)2-1是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)如圖,在四棱錐S-ABCD中,底面ABCD是正方形,四個側(cè)面都是等邊三角形,AC與BD的交點為O,E為側(cè)棱SC上一點.
(1)當(dāng)E為側(cè)棱SC的中點時,求證:SA∥平面BDE;
(2)求證:平面BED⊥平面SAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)函數(shù)y=(sinx+cosx)2-1是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)當(dāng)x∈(1,2)時,不等式(x-1)2<logax恒成立,則實數(shù)a的取值范圍是
(1,2]
(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)手表的表面在一平面上,整點1,2,…,12這12個數(shù)字等間隔地分布在半徑為
2
2
的圓周上,從整點i到整點(i+1)的向量記作
titi+1
,則
t1t2
t2t3
+
t2t3
t3t4
+…+
t12t1
t1t2
=
6
3
-9
6
3
-9

查看答案和解析>>

同步練習(xí)冊答案