【題目】為了解學(xué)生寒假期間學(xué)習(xí)情況,學(xué)校對(duì)某班男、女學(xué)生學(xué)習(xí)時(shí)間進(jìn)行調(diào)查,學(xué)習(xí)時(shí)間按整小時(shí)統(tǒng)計(jì),調(diào)查結(jié)果繪成折線圖如下:

I)已知該校有名學(xué)生,試估計(jì)全校學(xué)生中,每天學(xué)習(xí)不足小時(shí)的人數(shù).

II)若從學(xué)習(xí)時(shí)間不少于小時(shí)的學(xué)生中選取人,設(shè)選到的男生人數(shù)為,求隨機(jī)變量的分布列.

III)試比較男生學(xué)習(xí)時(shí)間的方差與女生學(xué)習(xí)時(shí)間方差的大。ㄖ恍鑼懗鼋Y(jié)論).

【答案】I240人;II見解析; .

【解析】試題分析:I)由折線圖可得抽取樣本的容量,進(jìn)而得到每天學(xué)習(xí)不足小時(shí)的比例,在乘以總體數(shù)可得結(jié)果;II)分析題意得到的所有可能取值,并分別求出對(duì)應(yīng)的概率,寫成表格的形式可得分布列;III)分析圖形得到男(女)生學(xué)習(xí)時(shí)間的分散程度后比較即可。

試題解析:

I)由折線圖可得共抽取了20人,其中男生中學(xué)習(xí)時(shí)間不足小時(shí)的有12人,女生中學(xué)習(xí)時(shí)間不足小時(shí)的有8人。

∴可估計(jì)全校中每天學(xué)習(xí)不足小時(shí)的人數(shù)為: 人.

II)學(xué)習(xí)時(shí)間不少于本的學(xué)生共人,其中男學(xué)生人數(shù)為人,故的所有可能取值為, , ,

由題意可得;

;

;

;

所以隨機(jī)變量的分布列為

∴均值

由折線圖可得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),求函數(shù)的最大值;

(2)若,且對(duì)任意的, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣x2+1.

(Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實(shí)數(shù)ab的值;

(Ⅱ)討論函數(shù)f(x)的單調(diào)性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= cos4x+2sinxcosx﹣ sin4x.
(1)當(dāng)x∈[0, ]時(shí),求f(x)的最大值、最小值以及取得最值時(shí)的x值;
(2)設(shè)g(x)=3﹣2m+mcos(2x﹣ )(m>0),若對(duì)于任意x1∈[0, ],都存在x2∈[0, ],使得f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Acos( + ),x∈R,且f( )=
(1)求A的值;
(2)設(shè)α,β∈[0, ],f(4α+ π)=﹣ ,f(4β﹣ π)= ,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若m,n∈[﹣1,1],m+n≠0 時(shí),有
(1)求證:f(x)在[﹣1,1]上為增函數(shù);
(2)求不等式 的解集;
(3)若 對(duì)所有 恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在( n的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(1)求n;
(2)求含x2項(xiàng)的系數(shù);
(3)求展開式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列3個(gè)命題:
(1)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
(2)若函數(shù)f(x)=ax2+bx+2與x軸沒有交點(diǎn),則b2﹣8a<0且a>0;
(3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).
其中正確命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案