已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.
分析:(1)利用已知條件,轉(zhuǎn)化不等式為絕對值不等式,即可求m的值;
(2)通過a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,直接利用柯西不等式,求出Z=a+2b+3c的最小值.
解答:解:(1)因?yàn)閒(x+2)=m-|x|,f(x+2)≥0等價(jià)于|x|≤m,
由|x|≤m有解,得m≥0,且其解集為{x|-m≤x≤m}.
又f(x+2)≥0的解集為[-1,1],故m=1.…(6分)
(2)由(1)知
1
a
+
1
2b
+
1
3c
=1,又a,b,c∈R+,由柯西不等式得
Z=a+2b+3c=(a+2b+3c)(
1
a
+
1
2b
+
1
3c
)≥(
a•
1
a
+
2b•
1
2b
+
3c•
1
3c
2=9.
∴Z=a+2b+3c 的最小值為9                                  ….(12分)
點(diǎn)評(píng):本題考查絕對值不等式的解法解法,柯西不等式求解表達(dá)式的最值,考查轉(zhuǎn)化思想與計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m•2x+t的圖象經(jīng)過點(diǎn)A(1,1)、B(2,3)及C(n,Sn),Sn為數(shù)列{an}的前n項(xiàng)和,n∈N*
(1)求Sn及an;
(2)若數(shù)列{cn}滿足cn=6nan-n,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m(x+
1
x
)的圖象與h(x)=(x+
1
x
)+2的圖象關(guān)于點(diǎn)A(0,1)對稱.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對稱軸間的距離不小于
π
2

(Ⅰ)求ω的取值范圍;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,a=
3
,b+c=3,當(dāng)ω最大時(shí),f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下兩題任選一題:(若兩題都作,按第一題評(píng)分)
(一):在極坐標(biāo)系中,圓ρ=2cosθ的圓心到直線θ=
π
3
(ρ∈R)的距離
3
2
3
2
;
(二):已知函數(shù)f(x)=m-|x-2|,m∈R,當(dāng)不等式f(x+2)≥0的解集為[-2,2]時(shí),實(shí)數(shù)m的值為
2
2

查看答案和解析>>

同步練習(xí)冊答案