【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),其中.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

1)求的直角坐標(biāo)方程;

2)已知點(diǎn),交于點(diǎn),與交于兩點(diǎn),且,求的普通方程.

【答案】1,2.

【解析】

(1)利用極角概念得出曲線 的直角坐標(biāo)方程.對于先利用二倍角公式化簡再轉(zhuǎn)化.

(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用參數(shù)的意義求出直線的斜率.

解:(1)曲線的直角坐標(biāo)方程為,

方程可化為,

代入(*),得. 

2)由直線的參數(shù)方程為為參數(shù)),得知直線過點(diǎn)

另設(shè)直線的參數(shù)方程為(其中為參數(shù),的傾斜角,且),

則點(diǎn)對應(yīng)的參數(shù)值為,即,

代入,得,

整理,得,

設(shè)對應(yīng)的參數(shù)值分別為,

,

因?yàn)?/span>,所以, 

所以,

解得,

的普通方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若時,求函數(shù)的最小值;

(2)若,證明:函數(shù)有且只有一個零點(diǎn);

(3)若函數(shù)有兩個零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,分別為的中點(diǎn),則下列關(guān)系:

;

平面

;

平面,

正確的編號為___________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,AC⊥BC,H為PC的中點(diǎn),M為AH中點(diǎn),PA=AC=2,BC=1.

(Ⅰ)求證:AH⊥平面PBC;

(Ⅱ)求PM與平面AHB成角的正弦值;

(Ⅲ)在線段PB上是否存在點(diǎn)N,使得MN∥平面ABC,若存在,請說明點(diǎn)N的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.

(1)求該拋物線的方程;

(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 ,其焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于,兩點(diǎn),過,分別作拋物線的切線,,交于點(diǎn).

(Ⅰ)求的值;

(Ⅱ)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為選拔A,B兩名選手參加某項(xiàng)比賽,在選拔測試期間,他們參加選拔的5次測試成績(滿分100分)記錄如下:

1)從AB兩人的成績中各隨機(jī)抽取一個,求B的成績比A低的概率;

2)從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位選手參加比賽更合適?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為調(diào)查高二年級學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖((1))和女生身高情況的頻率分布直方圖((2)).已知圖(1)中身高(單位:)內(nèi)的男生人數(shù)有16.

(Ⅰ)求在抽取的學(xué)生中,男女生各有多少人?

(Ⅱ)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分之幾)的把握認(rèn)為身高與性別有關(guān)”?

總計(jì)

男生人數(shù)

女生人數(shù)

總計(jì)

:參考公式和臨界值表:

,

5.024

6.635

7.879

10.828

0.025

0.010

0.005

0.001

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E的左、右焦點(diǎn)分別為F1F2,離心率為,點(diǎn)A在橢圓E上,∠F1AF260°,△F1AF2的面積為4.

(1)求橢圓E的方程;

(2)過原點(diǎn)O的兩條互相垂直的射線與橢圓E分別交于P,Q兩點(diǎn),證明:點(diǎn)O到直線PQ的距離為定值,并求出這個定值.

查看答案和解析>>

同步練習(xí)冊答案