【題目】如圖,在四棱錐中,平面平面,四邊形為矩形,的中點,的中點.

(1)求證:;

(2)求證:平面.

【答案】(1)見證明;(2)見證明

【解析】

1)由矩形的性質(zhì)可得ABAD,利用面面垂直的性質(zhì)可求AB⊥平面PAD,利用線面垂直的性質(zhì)可證ABPD2)取PD的中點E,連接AE,ME,利用中位線的性質(zhì)可證四邊形ANME為平行四邊形,進而可證MN∥平面PAD

證明:(1)因為四邊形為矩形,所以.

因為平面平面,

平面平面

平面,所以平面,

因為平面,所以;

(2)取的中點,連接,,

中,的中點,的中點,

所以的中位線,

所以,

在矩形中,,

所以,

因為中點,所以,

所以四邊形ANME為平行四邊形.

所以,

因為平面平面,

所以平面.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面平面,其中為矩形,為梯形,,,.

(Ⅰ)求證:平面;

(Ⅱ)若二面角的平面角的余弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,

(Ⅰ)求證:;

(Ⅱ)求證:;

(Ⅲ)在(Ⅱ)中的不等式中,能否找到一個代數(shù)式,滿足所求式?若能,請直接寫出該代數(shù)式;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)試求f(x)的單調(diào)區(qū)間;
(2)求證:不等式對于x∈(1,2)恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列的前項和為,則下列命題:(1)若數(shù)列是遞增數(shù)列,則數(shù)列也是遞增數(shù)列;(2)數(shù)列是遞增數(shù)列的充要條件是數(shù)列的各項均為正數(shù);(3)若是等差數(shù)列(公差),則的充要條件是;(4)若是等比數(shù)列,則的充要條件是.其中,正確命題的個數(shù)是( 。

A. 0個B. 1個C. 2個D. 3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種商品原來每件售價為25元,年銷售量8萬件.

(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?

(2)為了擴大該商品的影響力,提高年銷售量.公司決定明年對該商品進行全面技術(shù)革新和營銷策略改革,并提高定價到元.公司擬投入萬元作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當該商品明年的銷售量a至少應(yīng)達到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)的導函數(shù)為f′(x),若f(x)=ex﹣f(0)x+x2(e是自然對數(shù)的底數(shù)).
(1)求f(0)和f′(1)的值;
(2)若g(x)=x2+a與函數(shù)f(x)的圖象在區(qū)間[﹣1,2]上恰有2兩個不同的交點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校有初級教師21人,中級教師14人,高級教師7人,現(xiàn)采用分層抽樣的方法從這些教師中抽取6人對績效工資情況進行調(diào)查.

(1)求應(yīng)從初級教師,中級教師,高級教師中分別抽取的人數(shù);

(2)若從抽取的6名教師中隨機抽取2名做進一步數(shù)據(jù)分析,求抽取的2名均為初級教師的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知圓,點,過點的直線與圓交于不同的兩點(不在y軸上)

1)若直線的斜率為3,求的長度;

2)設(shè)直線的斜率分別為,求證:為定值,并求出該定值;

3)設(shè)的中點為,是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案