已知A={x||x-1|<1};B={x|y=
x+2
x-1
,x∈R}
,求A∩B,A∪(?RB).
分析:通過解絕對值不等式化簡A,通過求對數(shù)函數(shù)的定義域化簡B,求出集合B的補(bǔ)集,最后求出兩集合的交集,并集即可.
解答:解:A={x||x-1|<1}={x|0<x<2}
B={x|
x+2
x-1
≥0}={x|x≤-2或x>1}
∴A∩B={x|1<x<2}
?RB={x|-2<x≤1}
A∪?RB={x|-2<x<2}.
點(diǎn)評:本題考查不等式的解法、函數(shù)的定義域的求法、集合的交集并集補(bǔ)集的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x<3},B={x|-1<x<5},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|
x-5
2
<-1},若?AB={x|x+4<-x},則集合B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x<1},B={x|-1<x<2},則A∪B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域為數(shù)學(xué)公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案