已知橢圓
x2
16
+
y2
12
=1的左、右焦點(diǎn)分別為F1、F2,M是橢圓上一點(diǎn),N是MF1的中點(diǎn),若|ON|=1,則MF1的長(zhǎng)等于( 。
A、2B、4C、6D、5
分析:先根據(jù)橢圓的方程求得a,進(jìn)而根據(jù)橢圓的定義求得|MF1|+|MF2|的值,進(jìn)而把|ON|的值代入即可求得答案.
解答:解:由橢圓方程知a=4,
∴根據(jù)橢圓的定義可知|MF1|+|MF2|=8,
∴|MF1|=8-|MF2|=8-2|ON|=8-2=6.
故選C.
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì).特別是利用了橢圓的定義,考查了學(xué)生對(duì)橢圓基礎(chǔ)知識(shí)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓
x2
16
+
y2
12
=1,點(diǎn)P為其上一點(diǎn),F(xiàn)1、F2為橢圓的焦點(diǎn),Q為射線F1P延長(zhǎng)線上一點(diǎn),且|PQ|=|PF2|,設(shè)R為F2Q的中點(diǎn).
(1)當(dāng)P點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求R形成的軌跡方程;
(2)設(shè)點(diǎn)R形成的曲線為C,直線l:y=k(x+4
2
)與曲線C相交于A、B兩點(diǎn),若∠AOB=90°時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,則這個(gè)橢圓上存在六個(gè)不同的點(diǎn)M,使得△F1MF2為直角三角形;
②已知直線l過(guò)拋物線y=2x2的焦點(diǎn),且與這條拋物線交于A,B兩點(diǎn),則|AB|的最小值為2;
③若過(guò)雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個(gè)焦點(diǎn)作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個(gè)圓恰有2條公切線.
其中正確命題的序號(hào)是
 
.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
16
+
y2
12
=1
的左焦點(diǎn)是F1,右焦點(diǎn)是F2,點(diǎn)P在橢圓上,如果線段PF1的中點(diǎn)在y軸上,那么|PF1|:|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
16
+
y2
12
=1
的左焦點(diǎn)是F1,右焦點(diǎn)是F2,點(diǎn)P在橢圓上,如果線段PF1的中點(diǎn)在y軸上,那么|PF1|:|PF2|=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
16
+
y2
9
=1
與x軸交于A、B兩點(diǎn),焦點(diǎn)為F1、F2
(1)求以F1、F2為頂點(diǎn),以A、B為焦點(diǎn)的雙曲線E的方程;
(2)M為雙曲線E上一點(diǎn),y軸上一點(diǎn)P (0,
16
3
)
,求|MP|取最小值時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案