對(duì)于函數(shù)f(x)=
x1+|x|
 (x∈R)
,下列判斷中,正確結(jié)論的序號(hào)是
①②
①②
(請(qǐng)寫(xiě)出所有正確結(jié)論的序號(hào)).
①f(-x)+f(x)=0;      
②當(dāng)m∈(0,1)時(shí),方程f(x)=m總有實(shí)數(shù)解;
③函數(shù)f(x)的值域?yàn)镽;   
④函數(shù)f(x)的單調(diào)減區(qū)間為(-∞,+∞).
分析:①利用奇函數(shù)的定義即可判斷出;
②先求出函數(shù)的值域即可判斷出;
③由②可知不正確;
④可利用導(dǎo)數(shù)得出其單調(diào)性.
解答:解:①∵f(-x)+f(x)=
-x
1+|x|
+
x
1+|x|
=0,(x∈R),∴①正確;
②∵-|x|≤x≤|x|,∴-1<-
|x|
1+|x|
x
1+|x|
|x|
1+|x|
<1
,
∴函數(shù)f(x)的值域是(-1,1).
因此當(dāng)m∈(0,1)時(shí),方程f(x)=m總有實(shí)數(shù)解,
∴②正確;
③由②判斷可知③不正確;
④由①可知:函數(shù)f(x)是奇函數(shù).
又∵f(x)=
x
1+x
,當(dāng)x≥0時(shí)
x
1-x
,當(dāng)x<0時(shí)
,
當(dāng)x≥0時(shí),f(x)=
1
(1+x)2
>0
,∴函數(shù)f(x)在[0,+∞)上單調(diào)遞增;
由函數(shù)f(x)是奇函數(shù),∴函數(shù)f(x)在(-∞,0)也單調(diào)遞增,且在x=0時(shí)連續(xù),故函數(shù)f(x)在R上單調(diào)遞增.
因此④不正確.
綜上可知:正確答案為①②.
故答案為①②.
點(diǎn)評(píng):熟練掌握函數(shù)的單調(diào)性和奇偶性是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線(xiàn)x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線(xiàn)y=kx+m為函數(shù)f(x)與g(x)的“分界線(xiàn)”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線(xiàn)”?若存在,求出“分界線(xiàn)”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:013

下列說(shuō)法正確的是

[  ]

A.對(duì)于函數(shù)f(x),如果存在一個(gè)常數(shù)T,使得定義域內(nèi)的每一個(gè)x值都滿(mǎn)足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)

B.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在一個(gè)x滿(mǎn)足于f(x+T)=f(x),則f(x)叫做周期函數(shù)

C.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在若干個(gè)x滿(mǎn)足f(x+T)=f(x),則f(x)叫做周期函數(shù)

D.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域的每一個(gè)x值滿(mǎn)足f(x+T)=f(x),則f(x)叫做周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

下列說(shuō)法正確的是

[  ]

A.對(duì)于函數(shù)f(x),如果存在一個(gè)常數(shù)T,使得定義域內(nèi)的每一個(gè)x值都滿(mǎn)足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)

B.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在一個(gè)x滿(mǎn)足于f(x+T)=f(x),則f(x)叫做周期函數(shù)

C.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在若干個(gè)x滿(mǎn)足f(x+T)=f(x),則f(x)叫做周期函數(shù)

D.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域的每一個(gè)x值滿(mǎn)足f(x+T)=f(x),則f(x)叫做周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省成都樹(shù)德中學(xué)2012屆高考適應(yīng)考試(一)數(shù)學(xué)試題文理科 題型:022

對(duì)于函數(shù)f(x),定義:若存在非零常數(shù)M,T,使函數(shù)f(x)對(duì)定義域內(nèi)的任意x,都滿(mǎn)足f(x+T)-f(x)=M,則稱(chēng)函數(shù)y=f(x)是準(zhǔn)周期函數(shù),非零常數(shù)T稱(chēng)為函數(shù)y=f(x)的一個(gè)準(zhǔn)周期.如函數(shù)f(x)=2x+sinx是以T=2π為一個(gè)準(zhǔn)周期且M=4π的準(zhǔn)周期函數(shù).下列命題:

①2π是函數(shù)f(x)=sinx的一個(gè)準(zhǔn)周期;

②f(x)=x+(-1)x(x∈z)是以T=2為一個(gè)準(zhǔn)周期且M=2的準(zhǔn)周期函數(shù);

③函數(shù)f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是準(zhǔn)周期函數(shù);

④如果f(x)是一個(gè)一次函數(shù)與一個(gè)周期函數(shù)的和的形式,則f(x)一定是準(zhǔn)周期函數(shù);

⑤如果f(x+1)=-f(x)則函數(shù)h(x)=x+f(x)是以T=2為一個(gè)準(zhǔn)周期且M=4的準(zhǔn)周期函數(shù);其中的真命題是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線(xiàn)x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線(xiàn)y=kx+m為函數(shù)f(x)與g(x)的“分界線(xiàn)”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線(xiàn)”?若存在,求出“分界線(xiàn)”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案