若函數(shù)
有3個不同的零點,則實數(shù)
的取值范圍是( )
由函數(shù)f(x)=x3-3x+a有三個不同的零點,
則函數(shù)f(x)有兩個極值點,極小值小于0,極大值大于0;
由f′(x)=3x2-3=3(x+1)(x-1)=0,解得x1=1,x2=-1,
所以函數(shù)f(x)的兩個極,x∈(-∞,-1),f′(x)>0,x∈(-1,1),f′(x)<0,x∈(1,+∞),f′(x)>0,
∴函數(shù)的極小值f(1)=a-2和極大值f(-1)=a+2.
因為函數(shù)f(x)=x3-3x+a有三個不同的零點,
所以a+2>0,a-2<0,解之,得-2<a<2.故實數(shù)a的取值范圍是A
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(14分)設(shè)函數(shù)
.
(1)當(dāng)
時,求
的極值;
(2)當(dāng)
時,求
的單調(diào)區(qū)間;
(3)若對任意
及
,恒有
成立,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分) 已知函數(shù)
.
(Ⅰ)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時,函數(shù)
圖象上的點都在
所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍.
(Ⅲ)求證:
(其中
,e是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分16分)設(shè)
(1)請寫出
的表達(dá)式(不需證明);
(2)求
的極值
(3)設(shè)
的最大值為
,
的最小值為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)已知函數(shù)
.
(1)若
在
上是增函數(shù),求實數(shù)
的取值范圍;
(2)若
是
的極值點,求
在
上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本大題12分)
已知函數(shù)
在
上為單調(diào)遞增函數(shù).
(Ⅰ)求實數(shù)
的取值范圍;
(Ⅱ)若
,
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知函數(shù)
,其中
.
(Ⅰ)若
是
的極值點,求
的值;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)若
在
上的最大值是
,求
的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知函數(shù)
在(0,1)上不是單調(diào)函數(shù),則實數(shù)a的取值范圍為________.
查看答案和解析>>