【題目】直線過點(diǎn),與軸,軸的正半軸分布交于兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)當(dāng)直線的斜率時(shí),求的外接圓的面積;
(2)當(dāng)的面積最小時(shí),求直線的方程.
【答案】(1);(2).
【解析】
試題分析:對(duì)問題(1),首先根據(jù)題目條件求出直線的方程,在此基礎(chǔ)上求出直角三角形的斜邊長(zhǎng),即的外接圓的直徑,進(jìn)而可求出的外接圓的面積;對(duì)于問題(2),首先設(shè)出直線的方程,并用斜率表示出的面積,再結(jié)合基本不等式可求出的面積最小時(shí)斜率的值,進(jìn)而可求得直線的方程.
試題解析:(1)由題知直線的方程為,即.............2分
可知,..................3分
且是直角三角形,為斜邊,故的外接圓半徑..............4分
所以外接圓的面積......................5分
(2)由題知直線的斜率存在,且,設(shè)直線,
令;令,......................7分
,
由勾函數(shù)知,當(dāng)時(shí),最小..................9分
故直線的方程為,即....................10分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左右焦點(diǎn)分別為,,點(diǎn)滿足.
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 設(shè)直線與橢圓相交于兩點(diǎn),若直線與圓相交于,兩點(diǎn),且,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為原點(diǎn)的直角坐標(biāo)系中,點(diǎn)為的直角頂點(diǎn),已知,且點(diǎn)的縱坐標(biāo)大于0.
(1)求的坐標(biāo);
(2)求圓關(guān)于直線對(duì)稱的圓的方程;在直線上是否存在點(diǎn),過點(diǎn)的任意一條直線如果和圓圓都相交,則該直線被兩圓截得的線段長(zhǎng)相等,如果存在求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在和處的切線互相平行,求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對(duì)任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:
動(dòng)點(diǎn)分別到兩定點(diǎn)(-3,0)、(3,0) 連線的斜率之乘積為,設(shè)的軌跡為曲線,分別為曲線的左、右焦點(diǎn),則下列說法中:
(1)曲線的焦點(diǎn)坐標(biāo)為;
(2)當(dāng)時(shí),的內(nèi)切圓圓心在直線上;
(3)若,則;
(4)設(shè),則的最小值為;
其中正確的序號(hào)是:_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,左、右頂點(diǎn)分別為、,是橢圓上一點(diǎn), 記直線、的斜率為、,且有.
(1)求橢圓的方程;
(2)若直線與橢圓交于、兩點(diǎn), 以、為直徑的圓經(jīng)過原點(diǎn), 且線段的垂直平分線在軸上的截距為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公司從某大學(xué)招收畢業(yè)生,經(jīng)過綜合測(cè)試,錄用了14名男生和6名女生,這20名畢業(yè)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績(jī)?cè)?80分以上者到“甲部門”工作;180分以下者到“乙部門”工作.
(1)求男生成績(jī)的中位數(shù)及女生成績(jī)的平均值;
(2)如果用分層抽樣的方法從“甲部門”人選和“乙部門”人選中共選取5人,再從這5人中選2人,那么至少有一人是“甲部門”人選的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若為的極值點(diǎn),求實(shí)數(shù)的值;
(Ⅱ)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(III)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,側(cè)棱垂直于底面,分別是的中點(diǎn).
(1)求證: 平面平面;
(2)求證: 平面;
(3)求三棱錐體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com