【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥CD,CD⊥AC,過CD的平面分別與PA,PB交于點E,F(xiàn).
(1)求證:CD⊥平面PAC;
(2)求證:AB∥EF.
【答案】
(1)證明:∵在四棱錐P﹣ABCD中,PC⊥平面ABCD,CD平面ABCD,
∴CD⊥PC,
∵CD⊥AC,PC∩AC=C,
∴CD⊥平面PAC.
(2)∵AB∥CD,過CD的平面分別與PA,PB交于點E,F(xiàn),
且平面CDEF∩平面PAB=EF,
又CD平面PAB,AB平面PAB,
∴CD∥平面PAB,∴CD∥EF,
∴AB∥EF.
【解析】(1)證明直線垂直于平面,證這條直線與該平面內(nèi)兩條不相交的直線垂直即可;(2)平行的傳遞性在空間幾何中仍成立.
【考點精析】利用空間中直線與直線之間的位置關(guān)系和直線與平面垂直的判定對題目進行判斷即可得到答案,需要熟知相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點;一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想.
科目:高中數(shù)學 來源: 題型:
【題目】已知:已知函數(shù)f(x)=﹣ +2ax,
(Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線的斜率為﹣6,求實數(shù)a;
(Ⅱ)若a=1,求f(x)的極值;
(Ⅲ)當0<a<2時,f(x)在[1,4]上的最小值為﹣ ,求f(x)在該區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}與{bn}滿足an+1﹣an=2(bn+1﹣bn),n∈N+ , bn=2n﹣1,且a1=2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè) ,Tn為數(shù)列{cn}的前n項和,求Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了豎一塊廣告牌,要制造三角形支架,如圖,要求∠ACB=60°,BC的長度大于1米,且AC比AB長0.5米,為了穩(wěn)固廣告牌,要求AC越短越好,則AC最短為( )
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y=2x2 , 直線l:y=kx+2交C于A、B兩點,M是AB 的中點,過M作x 軸的垂線交C于N點.
(Ⅰ)證明:拋物線C在N 點處的切線與AB 平行;
(Ⅱ)是否存在實數(shù)k,使以AB為直徑的圓M經(jīng)過N點?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知極坐標系的極點在直角坐標系的原點,極軸與x軸的正半軸重合,曲線C的極坐標方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為 .試在曲線C上求一點M,使它到直線l的距離最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) , .
(1)求函數(shù)f(x)的值域;
(2)已知銳角△ABC的兩邊長a,b分別為函數(shù)f(x)的最小值與最大值,且△ABC的外接圓半徑為 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記等差數(shù)列{an}的前n項和為Sn .
(1)求證:數(shù)列{ }是等差數(shù)列;
(2)若a1=1,對任意的n∈N*,n≥2,均有 , , 是公差為1的等差數(shù)列,求使 為整數(shù)的正整數(shù)k的取值集合;
(3)記bn=a (a>0),求證: ≤ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com