【題目】已知函數(shù)f(x)= (其中e是自然對(duì)數(shù)的底數(shù),常數(shù)a>0).
(1)當(dāng)a=1時(shí),求曲線(xiàn)在(0,f(0))處的切線(xiàn)方程;
(2)若存在實(shí)數(shù)x∈(a,2],使得不等式f(x)≤e2成立,求a的取值范圍.
【答案】(1)切線(xiàn)方程為.(2)a的取值范圍是(0,1].
【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義得切線(xiàn)斜率,再根據(jù)點(diǎn)斜式求切線(xiàn)方程(2)先變量分離得 ,再利用導(dǎo)數(shù)求函數(shù)最大值,即得a的取值范圍.
試題解析:(1)f(x)的定義域?yàn)?/span>{x|x≠a}.
當(dāng)a=1時(shí),f(x)=,f′(x)=,
∴f(0)=-1,f′(0)=-2.
∴曲線(xiàn)在(0,f(0))處的切線(xiàn)方程為
2x+y+1=0.
(2)f′(x)=,
令f′(x)=0,x=a+1,
∴f(x)在(-∞,a),(a,a+1)上遞減,
在(a+1,+∞)上遞增.6分
若存在x∈(a,2],使不等式f(x)≤e2成立,只需在x∈(a,2]上,f(x)min≤e2成立.
①當(dāng)a+1≤2,即0<a≤1時(shí),f(x)min=f(a+1)=ea+1≤e2,
∴0<a≤1符合條件.10分
②當(dāng)a+1>2,即1<a<2時(shí),
f(x)min=f(2)=≤e2,解得a≤1,
又1<a<2,∴a∈.
綜上,a的取值范圍是(0,1].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x-a)(x-b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),若方程有兩個(gè)相異實(shí)根,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的菱形中, ,點(diǎn)分別是的中點(diǎn), ,沿將翻折到,連接,得到如圖的五棱錐,且
(1)求證: 平面(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示, 與四邊形所在平面垂直,且.
(1)求證: ;
(2)若為的中點(diǎn),設(shè)直線(xiàn)與平面所成角為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函數(shù)f(x)的解析式;并判斷f(x)在[-1,1]上的單調(diào)性(不要求證明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,底面ABC為正三角形,EA⊥平面ABC,DC⊥平面ABC,EA=AB=2DC=2a,設(shè)F為EB的中點(diǎn).
(1)求證:DF∥平面ABC;
(2)求直線(xiàn)AD與平面AEB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于圓柱的底面圓O,AB是圓O的直徑,AB=2,BC=1,DC、EB是兩條母線(xiàn),且tan∠EAB=.
(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點(diǎn)M,使得MO∥平面ADE,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018屆江西省南昌市高三第一輪】已知分別為三個(gè)內(nèi)角的對(duì)邊,且.
(Ⅰ)求;
(Ⅱ)若為邊上的中線(xiàn), , ,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com