設(shè)函數(shù)定義在上,,導(dǎo)函數(shù),
(1)求的單調(diào)區(qū)間和最小值;
(2)討論的大小關(guān)系;
(3)是否存在,使得對(duì)任意成立?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.
(1)區(qū)間在是函數(shù)的減區(qū)間;區(qū)間在是函數(shù)的增區(qū)間;最小值是
(2)當(dāng)時(shí),=0,∴;
當(dāng)時(shí),=0,∴
(3)不存在,見解析
(1)先求出原函數(shù),再求得,然后利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性(單調(diào)區(qū)間),并求出最小值;(2)作差法比較,構(gòu)造一個(gè)新的函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,并由單調(diào)性判斷函數(shù)的正負(fù);(3)存在性問題通常采用假設(shè)存在,然后進(jìn)行求解;注意利用前兩問的結(jié)論.
(1)∵,∴為常數(shù)),又∵,所以,即,
;,
,令,即,解得,
當(dāng)時(shí),,是減函數(shù),故區(qū)間在是函數(shù)的減區(qū)間;
當(dāng)時(shí),,是增函數(shù),故區(qū)間在是函數(shù)的增區(qū)間;
所以的唯一極值點(diǎn),且為極小值點(diǎn),從而是最小值點(diǎn),
所以的最小值是
(2),設(shè),
,
當(dāng)時(shí),,即,
當(dāng)時(shí),,
因此函數(shù)內(nèi)單調(diào)遞減,
當(dāng)時(shí),=0,∴;
當(dāng)時(shí),=0,∴
(3)滿足條件的不存在.證明如下:
證法一 假設(shè)存在,使對(duì)任意成立,
即對(duì)任意             ①
但對(duì)上述的,取時(shí),有,這與①左邊的不等式矛盾,
因此不存在,使對(duì)任意成立.
證法二 假設(shè)存在,使對(duì)任意成立,
由(1)知,的最小值是
,而時(shí),的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050228006533.png" style="vertical-align:middle;" />,
∴當(dāng)時(shí),的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050229878475.png" style="vertical-align:middle;" />,
從而可以取一個(gè)值,使,即,
,這與假設(shè)矛盾.
∴不存在,使對(duì)任意成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中且m為常數(shù).
(1)試判斷當(dāng)時(shí)函數(shù)在區(qū)間上的單調(diào)性,并證明;
(2)設(shè)函數(shù)處取得極值,求的值,并討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;  
(2)設(shè),求上的最大值;
(3)試證明:對(duì)任意,不等式都成立(其中是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·山東濟(jì)寧]已知f(x)=x2+2xf′(2014)+2014lnx,則f′(2014)=(  )
A.2015B.-2015C.2014D.-2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)的定義域?yàn)镽,f(-2)=2,對(duì)任意x∈R,xf′(x)>-f(x),則xf(x)<-4的解集為(   )
A.(-2,2)B.(-2,+∞)C.(-∞,-2)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求f(x)的反函數(shù)的圖象上圖象上,點(diǎn)(1,0)處的切線方程;
(2)證明: 曲線y =" f" (x)與曲線有唯一公共點(diǎn).
(3)設(shè)a<b, 比較的大小, 并說明理由.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=,要得到f′(x)的圖象,只需將f(x)的圖象( 。﹤(gè)單位.
A.向右平移B.向左平移
C.向右平移D.向左平移

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列求導(dǎo)數(shù)運(yùn)算正確的是(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案