選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,曲線C1的參數(shù)方程為
x=4cosθ
y=3sinθ
為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,得曲線C2的極坐標方程為ρ+6sinθ-8cosθ=0(ρ≥0).
(I)化曲線C1的參數(shù)方程為普通方程,化曲線C2的極坐標方程為直角坐標方程;
(II)直線l:
x=2+t
y=-
3
2
+λt
(t
為參數(shù))過曲線C1與y軸負半軸的交點,求直線l平行且與曲線C2相切的直線方程.
分析:(Ⅰ)利用三角函數(shù)的平方關系和極坐標與直角坐標的互化公式即可;
(Ⅱ)利用已知條件先求出直線l的方程,再利用直線與圓相切的充要條件即可求出.
解答:解:(Ⅰ)由曲線C1的參數(shù)方程為
x=4cosθ
y=3sinθ
為參數(shù)),消去參數(shù)θ化為普通方程
x2
16
+
y2
9
=1

由曲線C2的極坐標方程為ρ+6sinθ-8cosθ=0(ρ≥0)得ρ2+6ρsinθ-8ρcosθ=0化為直角坐標方程x2+y2+6y-8x=0可化為(x-4)2+(y+3)2=25,圓心C2(4,-3),半徑r=5.
(Ⅱ)由曲線C1的方程
x2
16
+
y2
9
=1
,令x=0得y=±3,∴曲線C1與y軸負半軸的交點為(0,-3);
∵直線l:
x=2+t
y=-
3
2
+λt
(t
為參數(shù))過點(0,-3),∴
0=2+t
-3=-
3
2
+λt
,解得
t=-2
λ=
3
4

∴直線l的方程為3x-4y-12=0.
設與直線l平行且與曲線C2相切的直線方程為3x-4y+m=0,
則圓心C2(4,-3)到直線l的距離d=r,即
|3×4-4×(-3)+m|
32+42
=5
化為|m+24|=25,解得m=1或-49,
∴與直線l平行且與曲線C2相切的直線方程為3x-4y+1=0或3x-4y-49=0.
點評:熟練掌握三角函數(shù)的平方關系、極坐標與直角坐標的互化公式、直線與圓相切的充要條件是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

[選修4-4:坐標系與參數(shù)方程]
在直角坐標系xoy中,直線l的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),若以直角坐標系xoy 的O點為極點,Ox為極軸,且長度單位相同,建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-
π
4
).直線l與曲線C交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A.選修4-1:幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長線相交于點E,∠BAC的平分線與BC
交于點D.求證:ED2=EB•EC.
B.選修4-2:矩陣與變換
求矩陣M=
-14
26
的特征值和特征向量.
C.選修4-4:坐標系與參數(shù)方程
在以O為極點的極坐標系中,直線l與曲線C的極坐標方程分別是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直線l與曲線C交于點.A,B,C,求線段AB的長.
D.選修4-5:不等式選講
對于實數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•遼寧)選修4-4:坐標系與參數(shù)方程
在直角坐標系xoy中以O為極點,x軸正半軸為極軸建立坐標系.圓C1,直線C2的極坐標方程分別為ρ=4sinθ,ρcos(θ-
π
4
)=2
2

(Ⅰ)求C1與C2交點的極坐標;
(Ⅱ)設P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數(shù)方程為
x=t3+a
y=
b
2
t3+1
(t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-4:
坐標系與參數(shù)方程在平面直角坐標系x0y中,曲線C1為x=acosφ,y=sinφ(1<a<6,φ為參數(shù)).
在以0為原點,x軸正半軸為極軸的極坐標中,曲線C2的方程為ρ=6cosθ,射線ι為θ=α,ι與C1的交點為A,ι與C2除極點外的一個交點為B.當α=0時,|AB|=4.
(1)求C1,C2的直角坐標方程;
(2)若過點P(1,0)且斜率為
3
的直線m與曲線C1交于D、E兩點,求|PD|與|PE|差的絕對值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•晉中三模)選修4-4:坐標系與參數(shù)方程選講
在直角坐標系xoy中,曲線c1的參數(shù)方程為:
x=2cosθ
y=2sinθ
(θ為參數(shù)),把曲線c1上所有點的縱坐標壓縮為原來的一半得到曲線c2,以O為極點,x正半軸為極軸建立極坐標系,直線l的極坐標方程為
2
ρcos(θ-
π
4
)=4

(1)求曲線c2的普通方程,并指明曲線類型;
(2)過(1,0)點與l垂直的直線l1與曲線c2相交與A、B兩點,求弦AB的長.

查看答案和解析>>

同步練習冊答案