【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知,,.
(1)證明:為等比數(shù)列,求出的通項(xiàng)公式;
(2)若,求的前n項(xiàng)和,并判斷是否存在正整數(shù)n使得成立?若存在求出所有n值;若不存在說明理由.
【答案】(1)證明見解析,;(2)不存在,理由見解析.
【解析】
(1)根據(jù)等比數(shù)列的定義即可證明為等比數(shù)列,再根據(jù)和的關(guān)系 ,即可求出的通項(xiàng)公式;
(2)根據(jù),可采取錯(cuò)位相減法求出的前n項(xiàng)和,然后代入得,,構(gòu)造函數(shù)(),利用其單調(diào)性和零點(diǎn)存在性定理即可判斷是否存在.
(1)∵
∴,
因?yàn)?/span>,所以可推出.
故,即為等比數(shù)列.
∵,公比為2
∴,即,∵,當(dāng)時(shí),,也滿足此式,
∴;
(2) 因?yàn)?/span>,
∴,兩式相減得:
即,代入,得.
令(),在成立,
∴,為增函數(shù),
而,所以不存在正整數(shù)n使得成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有兩個(gè)調(diào)查抽樣:(1)某班為了了解班級(jí)學(xué)生在家表現(xiàn)情況決定從10名家長(zhǎng)中抽取3名參加座談會(huì);(2)某研究部門在高考后從2000名學(xué)生(其中文科400名,理科1600名)中抽取200名考生作為樣本調(diào)查數(shù)學(xué)學(xué)科得分情況.
給出三種抽樣方法:Ⅰ.簡(jiǎn)單隨機(jī)抽樣法;Ⅱ.系統(tǒng)抽樣法;Ⅲ.分層抽樣法.
則問題(1)、(2)選擇的抽樣方法合理的是( )
A.(1)選Ⅲ,(2)選ⅠB.(1)選Ⅰ,(2)選Ⅲ
C.(1)選Ⅱ,(2)選ⅠD.(1)選Ⅲ,(2)選Ⅱ
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知袋子中放有大小和形狀相同標(biāo)號(hào)分別是0,1,2的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球2個(gè),標(biāo)號(hào)為2的小球n個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是.
(1)求n的值
(2)從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為a,第二次取出的球標(biāo)號(hào)為b.
①記“”為事件A,求事件A的概率;
②在區(qū)間內(nèi)任取2個(gè)實(shí)數(shù)x,y,求事件“恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直角坐標(biāo)系中,點(diǎn)到拋物線:的準(zhǔn)線的距離為.點(diǎn)是上的定點(diǎn),,是上的兩動(dòng)點(diǎn),且線段的中點(diǎn)在直線上.
(1)求曲線的方程及點(diǎn)的坐標(biāo);
(2)記,求弦長(zhǎng)(用表示);并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)國(guó)家號(hào)召,某校組織部分學(xué)生參與了“垃圾分類,從我做起”的知識(shí)問卷作答,并將學(xué)生的作答結(jié)果分為“合格”與“不合格”兩類與“問卷的結(jié)果”有關(guān)?
不合格 | 合格 | |
男生 | 14 | 16 |
女生 | 10 | 20 |
(1)是否有90%以上的把握認(rèn)為“性別”與“問卷的結(jié)果”有關(guān)?
(2)在成績(jī)合格的學(xué)生中,利用性別進(jìn)行分層抽樣,共選取9人進(jìn)行座談,再?gòu)倪@9人中隨機(jī)抽取5人發(fā)送獎(jiǎng)品,記拿到獎(jiǎng)品的男生人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.703 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù).
(1)求證:在上存在唯一零點(diǎn);
(2)求證:有且僅有兩個(gè)不同的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年10月5日, 美國(guó)NBA火箭隊(duì)總經(jīng)理莫雷公開發(fā)布涉港錯(cuò)誤言論,中國(guó)公司與明星紛紛站出來(lái)抵制火箭隊(duì),隨后京東、天貓、淘寶等中國(guó)電商平臺(tái)全線下架了火箭隊(duì)的所有商品,當(dāng)天有大量網(wǎng)友關(guān)注此事,某網(wǎng)上論壇從關(guān)注此事跟帖中,隨機(jī)抽取了100名網(wǎng)友進(jìn)行調(diào)查統(tǒng)計(jì),先分別統(tǒng)計(jì)他們?cè)诟械牧粞詶l數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組:,,,,,,得到如圖所示的頻率分布直方圖;并將其中留言不低于40條的規(guī)定為“強(qiáng)烈關(guān)注”,否則為“一般關(guān)注”,對(duì)這100名網(wǎng)友進(jìn)一步統(tǒng)計(jì)得到列聯(lián)表的部分?jǐn)?shù)據(jù)如下表:
一般關(guān)注 | 強(qiáng)烈關(guān)注 | 合計(jì) | |
男 | 60 | ||
女 | 5 | 40 | |
合計(jì) | 100 |
(1)補(bǔ)全列聯(lián)表中數(shù)據(jù),并判斷能否有的把握認(rèn)為網(wǎng)友對(duì)此事件是否為“強(qiáng)烈關(guān)注”與性別有關(guān)?
(2)現(xiàn)已從男性網(wǎng)友中分層抽樣選取了6人,再?gòu)倪@6人中隨機(jī)選取2人,求這2人中至少有1人屬于“強(qiáng)烈關(guān)注”的概率.
附:,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓上的三個(gè)點(diǎn),為坐標(biāo)原點(diǎn).
(1)若所在的直線方程為,求的長(zhǎng);
(2)設(shè)為線段上一點(diǎn),且,當(dāng)中點(diǎn)恰為點(diǎn)時(shí),判斷的面積是否為常數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中國(guó)剩余定理”又稱“孫子定理”,最早可見于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將1到2020這2020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com