【題目】如圖,在四棱錐PABCD中,底面ABCD是邊長為1的正方形,PBBC,PDDC,且PC

1)求證:PA⊥平面ABCD;

2)求異面直線ACPD所成角的余弦值;

3)求二面角BPDC的余弦值.

【答案】(1)證明見解析(2)(3)

【解析】

(1)先證PABC, PACD,再根據(jù)直線與平面垂直的判定定理可證結(jié)論;

(2)為原點(diǎn),以射線分別為軸建立空間直線坐標(biāo)系,利用空間向量的坐標(biāo)可求得結(jié)果;

(3)利用平面PDC和平面PDB的法向量的坐標(biāo),計(jì)算可得二面角BPDC的余弦值.

1)證明:∵底面ABCD是邊長為1的正方形,

ABBC,CDAD,

PBBC,ABPBB,且都在平面PAB內(nèi),

BC⊥平面PAB

PA在平面PAB內(nèi),

PABC

同理,由PDDCCDAD,且PDADD,都在平面PAD內(nèi),

CD⊥平面PAD,

PA在平面PAD內(nèi),

PACD,

BCCDC,且都在平面ABCD內(nèi),

PA⊥平面ABCD;

2)由(1)知,PA⊥平面ABCD,且,,建立如圖所示空間直角坐標(biāo)系,

由題意可得,A00,0),C11,0),P0,01),D10,0),B0,1,0),

,

,

∴異面直線ACPD所成角的余弦值為;

3)由(2)知,,

設(shè)平面PDC的一個法向量為,則,∴,

x1,則z1,∴,

設(shè)平面PDB的一個法向量為,則,∴

a1,則b1,c1,

,即二面角BPDC的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年10月1日,在慶祝新中國成立70周年閱兵中,由我國自主研制的軍用飛機(jī)和軍用無人機(jī)等參閱航空裝備分秒不差飛越天安門,壯軍威,振民心,令世人矚目.飛行員高超的飛行技術(shù)離不開艱苦的訓(xùn)練和科學(xué)的數(shù)據(jù)分析.一次飛行訓(xùn)練中,地面觀測站觀測到一架參閱直升飛機(jī)以千米/小時的速度在同一高度向正東飛行,如圖,第一次觀測到該飛機(jī)在北偏西的方向上,1分鐘后第二次觀測到該飛機(jī)在北偏東的方向上,仰角為,則直升機(jī)飛行的高度為________千米.(結(jié)果保留根號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的序號是( 。

b2”“1,b,4成等比數(shù)列的充要條件;

雙曲線與橢圓有共同焦點(diǎn)是真命題;

③若命題p∨¬q為假命題,則q為真命題;

④命題pxR,x2x+10的否定是:xR,使得x2x+1≤0

A.①②B.②③④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信運(yùn)動,是由騰訊開發(fā)的一個類似計(jì)步數(shù)據(jù)庫的公眾賬號.用戶可以通過關(guān)注微信運(yùn)動公眾號查看自己每天或每月行走的步數(shù),同時也可以和其他用戶進(jìn)行運(yùn)動量的或點(diǎn)贊.加入微信運(yùn)動后,為了讓自己的步數(shù)能領(lǐng)先于朋友,人們運(yùn)動的積極性明顯增強(qiáng),下面是某人20181月至201811月期間每月跑步的平均里程(單位:十公里)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)折線圖,下列結(jié)論正確的是(

A. 月跑步平均里程的中位數(shù)為月份對應(yīng)的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在、

D. 月至月的月跑步平均里程相對于月至月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知拋物線y28x的焦點(diǎn)為F,直線l過點(diǎn)F且依次交拋物線及圓2A,B,C,D四點(diǎn),則|AB|+4|CD|的最小值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若不等式上恒成立,則實(shí)數(shù)的取值范圍是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中, 橢圓的中心在坐標(biāo)原點(diǎn),其右焦點(diǎn)為,且點(diǎn) 在橢圓上.

(1)求橢圓的方程;

(2)設(shè)橢圓的左、右頂點(diǎn)分別為,是橢圓上異于的任意一點(diǎn),直線交橢圓于另一點(diǎn),直線交直線點(diǎn), 求證:三點(diǎn)在同一條直線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入的,則輸出的

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點(diǎn)分別為,,是橢圓在第一象限內(nèi)的一點(diǎn),并滿足,過作傾斜角互補(bǔ)的兩直線、分別交橢圓于、兩點(diǎn).

1)求點(diǎn)坐標(biāo);

2)當(dāng)直線經(jīng)過點(diǎn)時,求直線的方程;

3)求證直線的斜率為定值.

查看答案和解析>>

同步練習(xí)冊答案