如圖,過橢圓上的動(dòng)點(diǎn)引圓的兩條切線  

,其中分別為切點(diǎn),若橢圓上存在點(diǎn),使四邊形為正方形,則該橢圓離心率的范圍為           .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,其右焦點(diǎn)F是圓(x-1)2+y2=1的圓心.
(1)求橢圓方程;
(2)過所求橢圓上的動(dòng)點(diǎn)P作圓的兩條切線分別交y軸于M(0,m),N(0,n)兩點(diǎn),當(dāng)|m-n|=2
2
-1
時(shí),求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,橢圓方程為
x2
16
+
y2
b2
=1
(4>b>0).P為橢圓上的動(dòng)點(diǎn),
F1、F2為橢圓的兩焦點(diǎn),當(dāng)點(diǎn)P不在x軸上時(shí),過F1作∠F1PF2的外角
平分線的垂線F1M,垂足為M,當(dāng)點(diǎn)P在x軸上時(shí),定義M與P重合.
(1)求M點(diǎn)的軌跡T的方程;
(2)已知O(0,0)、E(2,1),試探究是否存在這樣的點(diǎn)Q:Q是軌跡T內(nèi)部的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn)),且△OEQ的面積S△OEQ=2?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,F(xiàn)1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn),A、B為兩個(gè)頂點(diǎn),已知橢圓C上的點(diǎn)(1,
3
2
)到F1、F2兩點(diǎn)的距離之和為4.
(1)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)M是橢圓上的動(dòng)點(diǎn)N(0,
1
2
),求|MN|的最大值.
(3)過橢圓C的焦點(diǎn)F2作AB的平行線交橢圓于P、Q兩點(diǎn),求△F1PQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三2月月考數(shù)學(xué)理卷 題型:填空題

如圖,過橢圓上的動(dòng)點(diǎn)引圓的兩條切線,其中分別為切點(diǎn),,若橢圓上存在點(diǎn),使,則該橢圓的離心率為____________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案