【題目】已知函數(shù).
(Ⅰ)若函數(shù)在內(nèi)有極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,對任意,,求證:.
【答案】(I);(II)證明見解析.
【解析】試題分析:
(I)求得導(dǎo)數(shù),題意說明在上有實(shí)根且在根的兩側(cè)異號,由知有兩個(gè)不等實(shí)根,且一根在上,于是另一根在上,由根的分布知識可得.
(II)由(I)的討論知的最大值為,的最小值是,因此只要證即可,化簡,為此只要求出函數(shù)在上的最小值,利用導(dǎo)數(shù)的知識可求解.
試題解析:
(Ⅰ)由定義域?yàn)?/span>
設(shè),要使在上有極值,
則有兩個(gè)不同的實(shí)根,
∴∴或,①
而且一根在區(qū)間上,不妨設(shè),
又因?yàn)?/span>,∴,
又,
∴.只需,即,∴,②
聯(lián)立①②可得:.
(Ⅱ)證明:由(Ⅰ)知,當(dāng),,∴單調(diào)遞減,
時(shí),,單調(diào)遞增,
∴在上有最小值,
即,都有,
又當(dāng),∴單調(diào)遞增,當(dāng),,
∴單調(diào)遞減,
∴在上有最大值即對,都有
又∵,,,,
∴
,
設(shè) ,
∴,
∴在上單調(diào)遞增,∴,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為常數(shù),函數(shù),給出以下結(jié)論:
(1)若,則存在唯一零點(diǎn)
(2)若,則
(3)若有兩個(gè)極值點(diǎn),則
其中正確結(jié)論的個(gè)數(shù)是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論在上的零點(diǎn)個(gè)數(shù);
(2)當(dāng)時(shí),若存在,使,求實(shí)數(shù)的取值范圍.(為自然對數(shù)的底數(shù),其值為2.71828……)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對任意x,y∈R,總有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,f(1)=-.
(1)求證:f(x)是R上的單調(diào)減函數(shù).
(2)求f(x)在[-3,3]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】輪船A從某港口O要將一些物品送到正航行的輪船B上,在輪船A出發(fā)時(shí),輪船B位于港口O北偏西30°且與O相距20海里的P處,并正以15海里/時(shí)的航速沿正東方向勻速行駛,假設(shè)輪船A沿直線方向以v海里/時(shí)的航速勻速行駛,經(jīng)過t小時(shí)與輪船B相遇,
(1)若使相遇時(shí)輪船A航距最短,則輪船A的航行速度的大小應(yīng)為多少?
(2)假設(shè)輪船B的航行速度為30海里/時(shí),輪船A的最高航速只能達(dá)到30海里/時(shí),則輪船A以多大速度及沿什么航行方向行駛才能在最短時(shí)間內(nèi)與輪船B相遇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛汽車從市出發(fā)沿海岸一條筆直公路以每小時(shí)的速度向東均速行駛,汽車開動時(shí),在市南偏東方向距市且與海岸距離為的海上處有一快艇與汽車同時(shí)出發(fā),要把一份稿件交給這汽車的司機(jī).
(1)快艇至少以多大的速度行駛才能把稿件送到司機(jī)手中?
(2)在(1)的條件下,求快艇以最小速度行駛時(shí)的行駛方向與所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),且x>0時(shí),f(x)=x2-4x+3.
求:(1)f(x)的解析式.
(2)已知t>0,求函數(shù)f(x)在區(qū)間[t,t+1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】江蘇省淮陰中學(xué)科技興趣小組在計(jì)算機(jī)上模擬航天器變軌返回試驗(yàn).設(shè)計(jì)方案如圖,航天器運(yùn)行(按順時(shí)針方向)的軌跡方程為,變軌(即航天器運(yùn)行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以軸為對稱軸、為頂點(diǎn)的拋物線的實(shí)線部分,降落點(diǎn)為.觀測點(diǎn)同時(shí)跟蹤航天器,試問:當(dāng)航天器在軸上方時(shí),觀測點(diǎn),測得離航天器的距離分別為多少時(shí),應(yīng)向航天器發(fā)出變軌指令?(變軌指令發(fā)出時(shí)航天器立即變軌)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 若方程恰有三個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com