對于函數(shù)f(x)=sin(ωx+?)(-
π
2
<?<
π
2
)
,以下列四個命題中的兩個為條件,余下的兩個為結(jié)論,寫出你認為正確的一個命題
 
.(序號表示)
①函數(shù)f (x)圖象關于直線x=
π
12
對稱;
②函數(shù)f (x)在區(qū)間[-
π
6
,0]
上是增函數(shù);
③函數(shù)f (x)圖象關于點(
π
3
,0)
對稱;
④函數(shù)f (x)周期為π.
分析:分析四個條件可以判斷出,④不可少,不然無法求出ω,②條件不能作為條件,由單調(diào)性不能求出∅,①或③條件都能與④結(jié)合求出函數(shù)的解析式,下依據(jù)解析式進行判斷即可得出正確的命題.
解答:解:分析四個條件,只有④可以求出參數(shù)ω=2,條件②給出的是單調(diào)性,此條件不能用來求出參數(shù)∅
對于條件①,函數(shù)f (x)圖象關于直線x=
π
12
對稱故2×
π
12
+φ=
π
2
或2×
π
12
+φ=-
π
2
,故φ=
π
3
或φ=-
3

∵-
π
2
<φ<
π
2
∴φ=
π
3
,即函數(shù)表達式為y=sin(2x+
π
3
)可以證得②③是這個函數(shù)的特性.故①④?②③
對于條件③函數(shù)f (x)圖象關于點(
π
3
,0)
對稱,可得2×
π
3
+φ=0或π故可以解得φ=
π
3
或φ=-
3
,同理可以得到函數(shù)的解析式為y=sin(2x+
π
3
),可以證得①②是這個函數(shù)的特性.故③④?①②
綜上知,應填①④?②③或③④?①②
點評:本題考查三角函數(shù)的圖象與性質(zhì)中的一種常 見題--(知點的坐標或圖象的對稱性求解析式)的解法,是高考試卷上的熱門題型,解決此類問題關鍵是把握其規(guī)律,明確那種特征能求得那個參數(shù)的值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①質(zhì)點的位移函數(shù)S(t)對時間t的導數(shù)就是質(zhì)點的加速度函數(shù);
②對于函數(shù)f(x)=2x2+1圖象上的兩點P(1,3)和Q(1+△x,3+△y),有
△y△x
=4+2△x
;
③若質(zhì)點的位移S(t)與時間t的關系為S(t)=kt+b,則質(zhì)點的平均速度與任意時刻的瞬時速度相等;
④“f'(x0)=0”是“函數(shù)y=f(x)在x=x0時取得極值”的充要條件.
其中,真命題的序號為
②③
②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江西)設函數(shù)f(x)=
1
a
x,0≤x≤a
 
1
1-a
(1-x),
a<x≤1
常數(shù)且a∈(0,1).
(1)當a=
1
2
時,求f(f(
1
3
));
(2)若x0滿足f(f(x0))=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點,試確定函數(shù)有且僅有兩個二階周期點,并求二階周期點x1,x2
(3)對于(2)中x1,x2,設A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),記△ABC的面積為s(a),求s(a)在區(qū)間[
1
3
,
1
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a>0,函數(shù)f(x)=
1-x2
1+x2
+a
1+x2
1-x2

(1)當a=1時,求f(x)的最小值;
(2)當a=1時,判斷f(x)的單調(diào)性,并說明理由;
(3)求實數(shù)a的范圍,使得對于區(qū)間[-
2
5
5
,
2
5
5
]
上的任意三個實數(shù)r、s、t,都存在以f(r)、f(s)、f(t)為邊長的三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),如果有限集合S滿足:①S⊆N*;②當x∈S時,f(x)∈S,則稱集合S是函數(shù)f(x)的生成集.例如f(x)=4-x,那么集合S1={2},S2={1,3},S3={1,2,3}都是f(x)的生成集,對于f(x)=
ax+b
x-2
(x>2,a,b∈R,若f(x)是減函數(shù),S是f(x)的生成集,則S不可能是( 。
A、{3,4,5,6,8,14}
B、{3,4,6,10,18}
C、{3,5,6,7,10,16}
D、{3,4,6,7,12,22}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=bx3+ax2-3x.

(1)若f(x)在x=1和x=3處取得極值,且f(x)的圖象上每一點的切線的斜率均不超過2sintcost-2cos2t+,試求實數(shù)t的取值范圍;

(2)若f(x)為實數(shù)集R上的單調(diào)函數(shù),且b≥-1,設點P的坐標為(a,b),試求出點P的軌跡所圍成的圖形的面積S.

查看答案和解析>>

同步練習冊答案