【題目】已知?jiǎng)狱c(diǎn)滿足:.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)若點(diǎn),分別位于軸與軸的正半軸上,直線與曲線相交于,兩點(diǎn),,試問在曲線上是否存在點(diǎn),使得四邊形(為坐標(biāo)原點(diǎn))為平行四邊形?若存在,求出直線的方程;若不存在,說明理由.
【答案】(1);(2)不存在.
【解析】
(1)由橢圓的定義可得點(diǎn)的軌跡為橢圓,且,,進(jìn)而可得其方程;(2)設(shè)直線的方程為,先根據(jù),可得,①,再根據(jù)韋達(dá)定理,點(diǎn)在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決.
(1)由已知,動(dòng)點(diǎn)到點(diǎn),的距離之和為4,且,
所以動(dòng)點(diǎn)的軌跡為橢圓,
且,,所以,
所以動(dòng)點(diǎn)的軌跡的方程為.
(2)由題意知的斜率存在且不為零,
設(shè)直線的方程為,
∵,∴,即,①
聯(lián)立消可得,
設(shè),,∴,,
∴,
∵四邊形為平行四邊形,故,
∴,整理可得,②,
將①代入②可得,該方程無解,故這樣的直線不存在.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過,,三點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)N 的直線被圓截得的弦AB的長為,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:若,則;
(2)當(dāng)時(shí),試討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.
(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);
(2)由直方圖可認(rèn)為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計(jì)有多少人?
(3)如果用抽取的考生成績的情況來估計(jì)全市考生的成績情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001)
附:①;
②,則;
③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)是曲線上的動(dòng)點(diǎn),點(diǎn)在的延長線上,且,點(diǎn)的軌跡為.
(1)求直線及曲線的極坐標(biāo)方程;
(2)若射線與直線交于點(diǎn),與曲線交于點(diǎn)(與原點(diǎn)不重合),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,現(xiàn)用一種新配方做試驗(yàn),生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗(yàn)結(jié)果:
質(zhì)量指標(biāo)值 | |||||
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(1)將答題卡上列出的這些數(shù)據(jù)的頻率分布表填寫完整,并補(bǔ)齊頻率分布直方圖;
(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)與中位數(shù)(結(jié)果精確到0.1).
質(zhì)量指標(biāo)值分組 | 頻數(shù) | 頻率 |
6 | 0.06 | |
合計(jì) | 100 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,為等邊三角形,是線段上的一點(diǎn),且平面.
(1)求證:為的中點(diǎn);
(2)若為的中點(diǎn),連接,,,,平面平面,,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會(huì)為了解同學(xué)對社團(tuán)活動(dòng)的滿意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再從這5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的圖象與直線分別交于、兩點(diǎn),則( )
A.的最小值為
B.使得曲線在處的切線平行于曲線在處的切線
C.函數(shù)至少存在一個(gè)零點(diǎn)
D.使得曲線在點(diǎn)處的切線也是曲線的切線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com