(2012•上高縣模擬)如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F2與拋物線y2=4x的焦點重合,過F2作與x軸垂直的直線l與橢圓交于S,T,而與拋物線交于C,D兩點,且
|CD|
|ST|
=2
2

(1)求橢圓E的方程;
(2)若過m(2,0)的直線與橢圓E相交于兩點A和B,設(shè)P為橢圓E上一點,且滿足
OA
+
OB
=t
OP
(O為坐標(biāo)原點),求實數(shù)t的取值范圍.
分析:(1)由焦點F2(1,0),過F2作與x軸垂直的直線l與橢圓交于S,T,而與拋物線交于C,D兩點,且
|CD|
|ST|
=2
2
,知|CD|=4,|ST|=
2
,由此能求出橢圓方程.
(2)設(shè)過m(2,0)的直線為y=k(x-2),由
x2+2y2=2
y=k(x-2)
,得(1+2k2)x2-8k2x+8k2-2=0,設(shè)A(x1,y1),B(x2,y2),P(x0,y0),
x1+x2=tx0
y1+y2=ty0
,由此結(jié)合題設(shè)條件能求出實數(shù)t的取值范圍.
解答:解:(1)∵橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F2與拋物線y2=4x的焦點重合,
∴焦點F2(1,0),
∵過F2作與x軸垂直的直線l與橢圓交于S,T,而與拋物線交于C,D兩點,且
|CD|
|ST|
=2
2

∴|CD|=4,解得|ST|=
2
,
∴a=
2
,b=1,c=1,
∴橢圓E的方程是
x2
2
+y2=1

(2)設(shè)過m(2,0)的直線為y=k(x-2),
x2+2y2=2
y=k(x-2)
,得(1+2k2)x2-8k2x+8k2-2=0,
設(shè)A(x1,y1),B(x2,y2),P(x0,y0),
x1+x2=tx0
y1+y2=ty0
,
x0=
1
t
(x1+x2)=
1
t
8k2
1+2k2
y0=
1
t
(y1+y2)=
1
t
(kx1-2k+kx2-2k)=
1
t
-4k2
1+2k2

2=x02+2y02=
1
t2
[(
8k2
1+2k2
)2+
32k2
(1+2k2)2
]
,
1
8
t2=
4k4+2k2
(1+2k2)2
,
∵△=(8k22-4(1+2k2)(8k2-2)>0,
∴0≤2k2<1,
1
8
t2=
(2k2)2+2k2
(1+2k2)2
=1-
1
1+2k2

∴t∈(-2,2).
點評:本題考查橢圓方程的求法,考查滿足條件的實數(shù)的取值范圍的求法,解題時要認(rèn)真審題,注意等價轉(zhuǎn)化思想的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上高縣模擬)點P到圖形C上每一個點的距離的最小值稱為點P到圖形C的距離,那么平面內(nèi)到定圓C的距離與到定點A的距離相等的點的軌跡不可能是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上高縣模擬)設(shè)△ABC的內(nèi)角A,B,C所對的邊為a,b,c;則下列命題正確的是
①②⑤
①②⑤

①若ab>c2;則C<
π
3
;②若a+b>2c;則C<
π
3
;③若(a2+b2)c2<2a2b2;則C>
π
3

④若(a+b)c<2ab;則C>
π
2
;⑤若a3+b3=c3;則C<
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上高縣模擬)在復(fù)平面內(nèi),復(fù)數(shù)
10i
3-i
對應(yīng)的點的坐標(biāo)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上高縣模擬)已知f(x)是R上的偶函數(shù),若將f(x)的圖象向左平移一個單位后,則得到一個奇函數(shù)的圖象,若f(2)=3,則f(0)+f(1)+f(2)+f(3)+…+f(2013)=
-3
-3

查看答案和解析>>

同步練習(xí)冊答案