(本小題滿分12分)已知橢圓C:過點,且長軸長等于4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是橢圓C的兩個焦點,⊙O是以F1F2為直徑的圓,直線l: y=kx+m與⊙O相切,并與橢圓C交于不同的兩點A、B,若,求的值

解:(Ⅰ)由題意橢圓的長軸2=4,得a=2,    ……………………………………1分
在橢圓上,    ……………………………………3分
∴橢圓的方程為……………………………………………………………4分
(Ⅱ)由直線l與圓O相切得 ……………………………5分
,由消去
整理得 ………………………………………-6分
由題可知圓O在橢圓內,所以直線必與橢圓相交   …………………………7分
      ……………………………………………8分
=
== ……………………………9分
…………………………10分
         …………………………………11分
…………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓與曲線無交點,則橢圓的離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)
過橢圓的一個焦點且垂直于軸的直線交橢圓于點。
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過點的直線與橢圓交于兩點、,使得(其中為弦的中點)?若存在,求出直線的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓過點,長軸長為,過點C(-1,0)且斜率為k的直線l與橢圓相交于不同的兩點A、B.
(1)求橢圓的方程;
(2)若線段AB中點的橫坐標是求直線l的斜率;
(3)在x軸上是否存在點M,使是與k無關的常數(shù)?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知是橢圓C的兩個焦點,、為過的直線與橢圓的交點,且的周長為
(Ⅰ)求橢圓C的方程;
(Ⅱ)判斷是否為定值,若是求出這個值,若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點F1、F2分別是橢圓的左、右焦點,過F1且垂直于x軸的直線與橢圓交于A、B兩點,若△ABF2為正三角形,則該橢圓的離心率是_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的一條準線經(jīng)過拋物線的焦點,則該橢圓的離心率為                                                              (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若橢圓的兩個焦點和短軸兩個頂點是有一個內角為的菱形的四個頂點,則橢圓的離心率為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題


橢圓的一焦點與短軸兩頂點組成一個等邊三角形,則橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案