2.下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是( 。
A.y=-2x+1B.y=$\frac{1}{3}$x2+1C.y=-x2-x-1D.y=x2-x+1

分析 分別根據(jù)一次函數(shù)、一元二次函數(shù)的圖象與單調(diào)性依次判斷即可.

解答 解:A、y=-2x+1是一次函數(shù),在區(qū)間(0,2)上是減函數(shù),A不符合條件;
B、y=$\frac{1}{3}$x2+1的對稱軸是x=0,在區(qū)間(0,2)上是增函數(shù),B符合條件;
C、y=-x2-x-1的對稱軸是x=$-\frac{1}{2}$,在區(qū)間(0,2)上是減函數(shù),C不符合條件;
D、y=x2-x+1的對稱軸是x=$\frac{1}{2}$,在區(qū)間(0,$\frac{1}{2}$)是減函數(shù),在區(qū)間($\frac{1}{2}$,2)上是增函數(shù),D不符合條件.
故選:B.

點評 本題考查了一次函數(shù)的單調(diào)性,以及一元二次函數(shù)的圖象與單調(diào)性,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.若復數(shù)Z=(x2-1)+(x2-3x+2)i,試求x的取值范圍.
(1)Z是實數(shù);
(2)Z是純虛數(shù);
(3)Z對應的點在復平面的第二象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知a為正的常數(shù),函數(shù)f(x)=|ax-x2|+lnx.
(1)若a=2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設g(x)=$\frac{f(x)}{x}$,求g(x)在區(qū)間[1,e]上的最小值.(e≈2.71828為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.將函數(shù)y=sinx的圖象的橫坐標擴大3倍,再將圖象向右平移3個單位,所得解析為(  )
A.y=sin(3x+1)B.y=sin($\frac{1}{3}$x-1)C.y=sin(3x+3)D.y=sin($\frac{1}{3}$x-3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設隨機變量X服從正態(tài)分布N(0,1),對給定的a(0<a<1),數(shù)ua由P(X>ua)=α確定,若P(|X|<x)=α,則x等于( 。
A.u${\;}_{\frac{a}{2}}$B.u${\;}_{1-\frac{a}{2}}$C.u${\;}_{\frac{1-a}{2}}$D.u1-a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.圓x2+y2+2x+4y-3=0上到直線x+y+1=0的距離為$\sqrt{2}$的點有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.直線$\left\{\begin{array}{l}{x=1+t}\\{y=1-t}\end{array}\right.$(t為參數(shù))的傾斜角的大小為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知平面α∥平面β,A,C∈α,B,D∈β,直線AB與CD交于點S,且AS=9,BS=8,CD=34,
(1)當S在α,β之間時,CS長多少?
(2)當S不在α,β之間時,CS長又是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知向量|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow{a}$•$\overrightarrow$=10,|$\overrightarrow{a}$+$\overrightarrow$|=5$\sqrt{2}$,則|$\overrightarrow$|=(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.5D.25

查看答案和解析>>

同步練習冊答案