【題目】在四邊形ABCD中(如圖①),AB∥CD,AB⊥BC,G為AD上一點,且AB=AG=1,GD=CD=2,M為GC的中點,點P為邊BC上的點,且滿足BP=2PC.現(xiàn)沿GC折疊使平面GCD⊥平面ABCG(如圖②).
(1)求證:平面BGD⊥平面GCD:
(2)求直線PM與平面BGD所成角的正弦值.
【答案】
(1)證明:在直角梯形ABCD中,AB=AG=1,GD=CD=2,BC=2 ,cosD= ,
∴GC= = ,BG= ,
∴BG2+GC2=BC2,∴BG⊥GC,
∵平面GCD⊥平面ABCG,平面GCD∩平面ABCG=GC,
∴BG⊥平面GCD,
∵BG平面GCD,
∴平面BGD⊥平面GCD
(2)解:取BP的中點H,連接GH,則GH∥MP,作HQ⊥平面BGD,連接GQ,則∠HGQ為直線GH與平面BGD所成的角,即直線PM與平面BGD所成角.
由(1),作CN⊥GD,則CN⊥平面BGD,
∵HQ⊥平面BGD,
∴HQ∥GN,
∴ = = ,
∴HQ= CN.
△DGC中,GC= ,DM= ,
由GDCN=GCDM,得CN= ,
∴HQ= ,
∵直角梯形ABCD中,GH= ,∴sin∠HGQ= = ,
∴直線PM與平面BGD所成角的正弦值為 .
【解析】(1)利用勾股定理,證明BG⊥GC,根據(jù)平面與平面垂直的性質(zhì),證明BG⊥平面GCD,即可證明平面BGD⊥平面GCD:(2)取BP的中點H,連接GH,則GH∥MP,作HQ⊥平面BGD,連接GQ,則∠HGQ為直線GH與平面BGD所成的角,即直線PM與平面BGD所成角.
【考點精析】根據(jù)題目的已知條件,利用平面與平面垂直的判定和空間角的異面直線所成的角的相關(guān)知識可以得到問題的答案,需要掌握一個平面過另一個平面的垂線,則這兩個平面垂直;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列{an}和{bn}滿足:對任意n∈N* , an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列,且a1=1,b1=2,a2=3.
(Ⅰ)證明數(shù)列{ }是等差數(shù)列;
(Ⅱ)求數(shù)列{ }前n項的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1: (φ為參數(shù),實數(shù)a>0),曲線C2: (φ為參數(shù),實數(shù)b>0).在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α(ρ≥0,0≤α≤ )與C1交于O、A兩點,與C2交于O、B兩點.當(dāng)α=0時,|OA|=1;當(dāng)α= 時,|OB|=2.
(Ⅰ)求a,b的值;
(Ⅱ)求2|OA|2+|OA||OB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解本市居民的生活成本,甲、乙、內(nèi)三名同學(xué)利用假期分別對三個社區(qū)進(jìn)行了“家庭每月日常消費額”的調(diào)查.他們將調(diào)查所得到的數(shù)據(jù)分別繪制成頻率分布直方圖(如圖所示),甲、乙、丙所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為x1 , x2 , x3 , 則它們的大小關(guān)系為( )
A.s1>s2>s3
B.s1>s3>s2
C.s3>s2>s1
D.s3>s1>s2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)是定義在R上的偶函數(shù),f(x+1)為奇函數(shù),f(0)=0,當(dāng)x∈(0,1]時,f(x)=log2x,則在區(qū)間(8,9)內(nèi)滿足方f(x)程f(x)+2=f( )的實數(shù)x為 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx+2,g(x)=x2﹣mx.
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若方程f(x)+g(x)=0有兩個不同的實數(shù)根,求證:f(1)+g(1)<0;
(Ⅲ)若存在x0∈[ ,e]使得mf′(x)+g(x)≥2x+m成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F(xiàn) 是棱 PA上的一個動點,E為PD的中點.
(Ⅰ)若 AF=1,求證:CE∥平面 BDF;
(Ⅱ)若 AF=2,求平面 BDF 與平面 PCD所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(2sin ,2sin ), =(cos ,﹣ sin ). (Ⅰ)求函數(shù)f(x)= + 的最小正周期;
(Ⅱ)若β= ,g(β)=tan2α,α≠ + 且α≠ +kπ(k∈Z),數(shù)列{an}滿足a1= ,an+12= ang(an)(n≤16且n∈N*),令bn= ,求數(shù)列{bn}的通項公式及前n項和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com