【題目】D為△ABC的BC邊上一點, ,過D點的直線分別交直線AB、AC于E、F,若 ,其中λ>0,μ>0,則 + = .
【答案】3
【解析】解:如圖所示,
∵ = + , = + =λ ,
∴ =(1﹣λ) ;
又E,D,F(xiàn)三點共線,
∴存在實數k,使 =k =k( ﹣ )=kμ ﹣kλ ;
又 =﹣2 ,
∴ = = ﹣ ;
∴(1﹣λ) =(kμ ﹣kλ )﹣( ﹣ ),
即(1﹣λ) =(kμ﹣ ) +( ﹣kλ) ,
∴ ,
解得μ= ,λ= ;
∴ + =3(1﹣k)+3k=3.
所以答案是:3.
所以答案是:3.
【考點精析】根據題目的已知條件,利用平面向量的基本定理及其意義的相關知識可以得到問題的答案,需要掌握如果、是同一平面內的兩個不共線向量,那么對于這一平面內的任意向量,有且只有一對實數、,使.
科目:高中數學 來源: 題型:
【題目】如圖,AB是⊙O的切線,ADE是⊙O的割線,AC=AB,連接CD,CE,分別與⊙O交于點F,點G.
(1)求證:△ADC~△ACE;
(2)求證:FG∥AC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩直線l1:mx+8y+n=0和l2:2x+my-1=0.試確定m,n的值,使
(1)l1與l2相交于點P(m,-1);則m=____,n=_______
(2)l1∥l2.則_________________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= ,關于x的方程[f(x)]2+mf(x)﹣1=0有三個不同的實數解,則實數m的取值范圍是( )
A.(﹣∞,e﹣ )
B.(e﹣ ,+∞)
C.(0,e)
D.(1,e)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知圓的參數方程為(為參數),若是圓與軸正半軸的交點,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,設過點的圓的切線為.
(1)求直線的極坐標方程;
(2)求圓上到直線的距離最大的點的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】點M(3,2)到拋物線C:y=ax2(a>0)準線的距離為4,F(xiàn)為拋物線的焦點,點N(l,l),當點P在直線l:x﹣y=2上運動時, 的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com