(本小題共13分)
如圖,當(dāng)甲船位于A處時(shí)獲悉,在其正東方向相距20海里的B處有一艘漁船遇險(xiǎn)等待營救.甲船立即前往救援,同時(shí)把消息告知在甲船的南偏西30,相距10海里C處的乙船.
(Ⅰ)求處于C處的乙船和遇險(xiǎn)漁船間的距離;
(Ⅱ)設(shè)乙船沿直線方向前往處救援,其方向與角,
 (x)的值域.

(Ⅰ)10(Ⅱ)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/14/4/fz4oo1.gif" style="vertical-align:middle;" />

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共13分)

   如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=

BAD=90°,AB中點(diǎn),FPC中點(diǎn).

   (I)求證:PEBC;

   (II)求二面角CPEA的余弦值;

   (III)若四棱錐PABCD的體積為4,求AF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共13分)

    如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=

BAD=90°,ADBC,EF分別為棱AB,PC的中點(diǎn).

   (I)求證:PEBC;

   (II)求證:EF//平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市宣武區(qū)2010年高三第一次質(zhì)量檢測數(shù)學(xué)(理)試題 題型:解答題

(本小題共13分)

   如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=

BAD=90°,AB中點(diǎn),FPC中點(diǎn).

   (I)求證:PEBC;

   (II)求二面角CPEA的余弦值;

   (III)若四棱錐PABCD的體積為4,求AF的長.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市宣武區(qū)2010年高三第一次質(zhì)量檢測數(shù)學(xué)(文)試題 題型:解答題

(本小題共13分)

    如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=

BAD=90°,ADBC,EF分別為棱AB,PC的中點(diǎn).

   (I)求證:PEBC;

   (II)求證:EF//平面PAD.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(北京) 題型:解答題

(本小題共13分)

如圖,有一塊半橢圓形鋼板,其半軸長為,短半軸長為,計(jì)劃將此鋼板切割成等腰梯形的形狀,下底是半橢圓的短軸,上底的端點(diǎn)在橢圓上,記,梯形面積為

(I)求面積為自變量的函數(shù)式,并寫出其定義域;

(II)求面積的最大值.

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案