(本題滿分15分)
已知圓A:
與x軸負(fù)半軸交于B點,過B的弦BE與y軸正半軸交于D點,且2BD=DE,曲線C是以A,B為焦點且過D點的橢圓.
(1)求橢圓的方程;
(2)點P在橢圓C上運動,點Q在圓A上運動,求PQ+PD的最大值.
解:(1)
……………… 4分
橢圓方程為
……………… 7分
(2)
………………10分
=2 ………………14分
所以P在DB延長線與橢圓交點處,Q在PA延長線與圓的交點處,得到最大值為
. 15分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)橢圓
C的中心為坐標(biāo)原點
O,焦點在
y軸上,短軸長為
、離心率為
,直線
與
y軸交于點
P(0,
),與
橢圓
C交于相異兩點
A、
B,且
。
(I)求橢圓方程;
(II)求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
設(shè)
是橢圓
上的兩點,點
是線段
的中點,線段
的垂直平分線與橢圓交于
兩點.
(Ⅰ)當(dāng)
時,過點P(0,1)且傾斜角為
的直線與橢圓相交于E、F兩點,求
長;
(Ⅱ)確定
的取值范圍,并求直線CD的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若橢圓
的兩個焦點到一條準(zhǔn)線的距離之比為3:2,則橢圓的離心率是( )
A.
B
. C.
D
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
為橢圓
上一點,
是橢圓的左、右焦點,若使△F1PF2為等邊三角形,則橢圓離心率為 ▲ .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
,焦點在y軸上的橢圓的標(biāo)準(zhǔn)方程是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
、
是橢圓
的焦點,在C上滿足
的點P的個數(shù)為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,橢圓與雙曲線有公共焦點
、
,它們在第一象限
的交點為
,且
,
,則橢圓與雙曲
線的離心率的倒數(shù)和為
A.2 | B. | C.2 | D.1 |
查看答案和解析>>