【題目】調(diào)查某車間20名工人的年齡,第i名工人的年齡為ai,具體數(shù)據(jù)見表:
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
ai | 29 | 28 | 30 | 19 | 31 | 28 | 30 | 28 | 32 | 31 | 30 | 31 | 29 | 29 | 31 | 32 | 40 | 30 | 32 | 30 |
(1)作出這20名工人年齡的莖葉圖;
(2)求這20名工人年齡的眾數(shù)和極差;
(3)執(zhí)行如圖所示的算法流程圖(其中 是這20名工人年齡的平均數(shù)),求輸出的S值.
【答案】
(1)解:莖葉圖如下:
(2)解:這20名工人年齡的眾數(shù)為30,極差為40﹣19=21
(3)解:
年齡的平均數(shù)為: = =30.
模擬執(zhí)行程序,可得:S= [(19﹣30)2+3×(28﹣30)2+3×(29﹣30)2+5×(30﹣30)2+4×(31﹣30)2+3×(32﹣30)2+(40﹣30)2]=12.6
【解析】(1)根據(jù)畫莖葉圖的步驟,畫圖即可;(2)根據(jù)眾數(shù)和極差的定義,即可得出;(3)利用方差的計(jì)算公式,代入數(shù)據(jù),計(jì)算即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解莖葉圖的相關(guān)知識(shí),掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少,以及對(duì)程序框圖的理解,了解程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知a+b=5,c= ,且4sin2 ﹣cos2C=
(1)求角C的大;
(2)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0,它們所表示的曲線可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,△PAD為等邊三角形, ,AB⊥AD,AB∥CD,點(diǎn)M是PC的中點(diǎn). (I)求證:MB∥平面PAD;
(II)求二面角P﹣BC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),且函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心到它對(duì)稱軸的最近距離為 .
(1)求ω的值及f(x)的對(duì)稱軸方程;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=0,sinB= ,a= ,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,PD⊥平面ABCD,BC⊥CD,PD=1,AB= ,BC=CD= ,AD=1.
(1)求異面直線AB、PC所成角的余弦值;
(2)點(diǎn)E是線段AB的中點(diǎn),求二面角E﹣PC﹣D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y2=2px(p>0)與雙曲線C2: =1(a>0.b>0)有公共焦點(diǎn)F,且在第一象限的交點(diǎn)為P(3,2 ).
(1)求拋物線C1 , 雙曲線C2的方程;
(2)過點(diǎn)F且互相垂直的兩動(dòng)直線被拋物線C1截得的弦分別為AB,CD,弦AB、CD的中點(diǎn)分別為G、H,探究直線GH是否過定點(diǎn),若GH過定點(diǎn),求出定點(diǎn)坐標(biāo);若直線GH不過定點(diǎn),說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某休閑廣場(chǎng)中央有一個(gè)半徑為1(百米)的圓形花壇,現(xiàn)計(jì)劃在該花壇內(nèi)建造一條六邊形觀光步道,圍出一個(gè)由兩個(gè)全等的等腰梯形(梯形ABCF和梯形DEFC)構(gòu)成的六邊形ABCDEF區(qū)域,其中A、B、C、D、E、F都在圓周上,CF為圓的直徑(如圖).設(shè)∠AOF=θ,其中O為圓心.
(1)把六邊形ABCDEF的面積表示成關(guān)于θ的函數(shù)f(θ);
(2)當(dāng)θ為何值時(shí),可使得六邊形區(qū)域面積達(dá)到最大?并求最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某人在M汽車站的北偏西20°的方向上的A處,觀察到點(diǎn)C處有一輛汽車沿公路向M站行駛,公路的走向是M站的北偏東40°,開始時(shí),汽車到A的距離為31千米,汽車前進(jìn)20千米后,到A的距離縮短了10千米.問汽車還需行駛多遠(yuǎn),才能到達(dá)M汽車站?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com