已知橢圓:
和圓
:
,過橢圓上一點
引圓
的兩
條切線,切點分別為
. 若橢圓上存在點
,使得
,則橢圓離心率
的取值范圍
是( )
試題分析:因為
,所以
,及圓的性質(zhì)可得
,
所以
,所以
,所以
,又因為
,
所以
.
點評:本題考查直線與橢圓的位置關(guān)系,考查橢圓的幾何性質(zhì),考查學(xué)生的計算能力,屬于
基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
曲線C的直角坐標(biāo)方程為
,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為
__________;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是橢圓的左、右焦點,O為坐標(biāo)原點,點P
在橢圓上,線段
與y軸的交點M滿足
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 圓O是以
為直徑的圓,直線
:
與圓相切,并與橢圓交于不同的兩點
,當(dāng)
,且滿足
時,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C:
.
(1)若橢圓的長軸長為4,離心率為
,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點M(0,2)的直線
l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線
l的斜率k的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是雙曲線
的左、右焦點,過
且垂直于
軸的直線與雙曲線交于
兩點,若△
是銳角三角形,則該雙曲線離心率的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知坐標(biāo)平面上點
與兩個定點
的距離之比等于5.
(1)求點
的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為
,過點
的直線
被
所截得的線段的長為8,求直線
的方程
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在平面直角坐標(biāo)系
中,已知△ABC頂點
和
,頂點B在橢圓
上,則
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若橢圓的兩個焦點與它的短軸的兩個端點是一個正方形的四個頂點,則橢圓的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓的兩焦點是F
1(0,-1),F(xiàn)
2(0,1),離心率e=
(1)求橢圓方程;(2)若P在橢圓上,且|PF
1|-|PF
2|=1,求cos∠F
1PF
2。
查看答案和解析>>