【題目】已知A(4, 0)B2, 2),C (6, 0),記ABC的外接圓為P

1P的方程.

(2)對于線段PA上的任意一點G,是否存在以B為圓心的圓,在圓B上總能找到不同的兩點E、F,滿足=,若存在,求圓B的半徑的取值范圍;若不存在,說明理由.

【答案】(1);(2)

【解析】試題分析:(1)設(shè)⊙P的方程為x2y2DxEyF=0,將A(4, 0),B(2, 2),C (6, 0)代入圓方程,解方程組即可得結(jié)果;(2)假設(shè)存在圓B: 滿足題意, ,又A(4, 0), PA的直線方程是: ,設(shè)Gm, n)(),設(shè)F(x, y),則中點,根據(jù)EF在圓B上可得,進(jìn)而可得結(jié)果.

試題解析:(1) 解法一:設(shè)P的方程為x2y2DxEyF0

因為點AB,C均在所求圓上,所以

解得

P的方程是

解法二: A(4, 0),B2, 2),C (6, 0),

AB的中垂線方程為:

AC的中垂線方程為: ,

聯(lián)立①②可得圓心,

半徑

P的方程是

2)假設(shè)存在圓B: 滿足題意,

,又A(4, 0),

PA的直線方程是: ,

設(shè)Gm, n)(

則有, ,

設(shè)F(x, y),則中點

E、F在圓B上可得:

,①

存在E、F即方程組①有解,即圓與圓有公共點,

所以,

代入可得

對任意恒成立,

上單調(diào)遞減,在單調(diào)遞增,

,

,解得

E為線段GF的中點, E、F在圓B上,

G在圓B

,即恒成立

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠修建一個長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價為120元,池壁每平方米的造價為100元.設(shè)池底長方形的長為x米.

(Ⅰ求底面積,并用含x的表達(dá)式表示池壁面積;

(Ⅱ怎樣設(shè)計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

I)設(shè),求的單調(diào)區(qū)間;

II)若處取得極大值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的圖象向右平移個單位后,圖象恰好為函數(shù)的圖象,則的值可以是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩廠產(chǎn)品的質(zhì)量,從兩廠生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取各10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克),如圖是測量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)產(chǎn)品中的此種元素含量不小于16毫克時,該產(chǎn)品為優(yōu)等品.

(1)從乙廠抽出的上述10件樣品中,隨機(jī)抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學(xué)期望;

(2)從甲廠的10件樣品中有放回地逐個隨機(jī)抽取3件,也從乙廠的10件樣品中有放回地逐個隨機(jī)抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠商調(diào)查甲、乙兩種不同型號電視機(jī)在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機(jī)的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機(jī)的星級賣場”.

(1)求在這10個賣場中,甲型號電視機(jī)的“星級賣場”的個數(shù);

(2)若在這10個賣場中,乙型號電視機(jī)銷售量的平均數(shù)為26.7,求a>b的概率;

(3)若a=1,記乙型號電視機(jī)銷售量的方差為,根據(jù)莖葉圖推斷b為何值時,達(dá)到最值.

(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線y=f(x)在點(1, f(1))處的切線方程為y=e(x-1)+2.

(1)求 (2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心是坐標(biāo)原點,焦點在軸上離心率為,又橢圓上任一點到兩焦點的距離和為過右焦點軸不垂直的直線交橢圓于,兩點

1求橢圓的方程;

2在線段上是否存在點使得?若存在,求出的取值范圍;若不存在,

說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,).

(1)若的部分圖像如圖所示,的解析式;

(2)在(1)的條件下,求最小正實數(shù),使得函數(shù)的圖象向左平移個單位后所對應(yīng)的函數(shù)是偶函數(shù);

(3)若上是單調(diào)遞增函數(shù),的最大值

查看答案和解析>>

同步練習(xí)冊答案