【題目】為了解某品種一批樹苗生長(zhǎng)情況,在該批樹苗中隨機(jī)抽取了容量為120的樣本,測(cè)量樹苗高度(單位:cm),經(jīng)統(tǒng)計(jì),其高度均在區(qū)間[19,31]內(nèi),將其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6組,制成如圖所示的頻率分布直方圖.其中高度為27 cm及以上的樹苗為優(yōu)質(zhì)樹苗.
(1)求圖中a的值;
(2)已知所抽取的這120棵樹苗來(lái)自于A,B兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:
A試驗(yàn)區(qū) | B試驗(yàn)區(qū) | 合計(jì) | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計(jì) |
將列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為優(yōu)質(zhì)樹苗與A,B兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說(shuō)明理由;
(3)用樣本估計(jì)總體,若從這批樹苗中隨機(jī)抽取4棵,其中優(yōu)質(zhì)樹苗的棵數(shù)為X,求X的分布列和數(shù)學(xué)期望EX.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
【答案】(1)0.025;(2)見(jiàn)解析;(3)見(jiàn)解析
【解析】
(1)根據(jù)直方圖數(shù)據(jù),有,從而可得結(jié)果;(2)根據(jù)直方圖完成列聯(lián)表,利用公式求得,與臨界值比較即可得結(jié)果;(3)由已知,這批樹苗為優(yōu)質(zhì)樹苗的概率為,且服從二項(xiàng)分布,由二項(xiàng)分布的期望公式可得結(jié)果.
(1)根據(jù)直方圖數(shù)據(jù),有,
解得.
(2)根據(jù)直方圖可知,樣本中優(yōu)質(zhì)樹苗有,列聯(lián)表如下:
A試驗(yàn)區(qū) | B試驗(yàn)區(qū) | 合計(jì) | |
優(yōu)質(zhì)樹苗 | 10 | 20 | 30 |
非優(yōu)質(zhì)樹苗 | 60 | 30 | 90 |
合計(jì) | 70 | 50 | 120 |
可得.
所以,沒(méi)有99.9%的把握認(rèn)為優(yōu)質(zhì)樹苗與A,B兩個(gè)試驗(yàn)區(qū)有關(guān)系.
(3)由已知,這批樹苗為優(yōu)質(zhì)樹苗的概率為,且X服從二項(xiàng)分布B(4,),
;;
;;
.
所以X的分布列為:
X | 0 | 1 | 2 | 3 | 4 |
P |
故數(shù)學(xué)期望EX=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)滿足下列條件:當(dāng)時(shí),的最小值為0,且成立;當(dāng)時(shí),恒成立.
(1)求的解析式;
(2)若對(duì),不等式恒成立、求實(shí)數(shù)的取值范圍;
(3)求最大的實(shí)數(shù),使得存在實(shí)數(shù),只要當(dāng)時(shí),就有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某品種一批樹苗生長(zhǎng)情況,在該批樹苗中隨機(jī)抽取了容量為120的樣本,測(cè)量樹苗高度(單位:cm),經(jīng)統(tǒng)計(jì),其高度均在區(qū)間[19,31]內(nèi),將其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6組,制成如圖所示的頻率分布直方圖.其中高度為27 cm及以上的樹苗為優(yōu)質(zhì)樹苗.
(1)求圖中a的值;
(2)已知所抽取的這120棵樹苗來(lái)自于A,B兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:
A試驗(yàn)區(qū) | B試驗(yàn)區(qū) | 合計(jì) | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計(jì) |
將列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為優(yōu)質(zhì)樹苗與A,B兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說(shuō)明理由;
(3)用樣本估計(jì)總體,若從這批樹苗中隨機(jī)抽取4棵,其中優(yōu)質(zhì)樹苗的棵數(shù)為X,求X的分布列和數(shù)學(xué)期望EX.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定橢圓C:(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為,且經(jīng)過(guò)點(diǎn)(0,1).
(1)求實(shí)數(shù)a,b的值;
(2)若過(guò)點(diǎn)P(0,m)(m>0)的直線l與橢圓C有且只有一個(gè)公共點(diǎn),且l被橢圓C的伴隨圓C1所截得的弦長(zhǎng)為2,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中,.
(1)是否存在實(shí)數(shù),使數(shù)列是等比數(shù)列?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由;
(2)若是數(shù)列的前項(xiàng)和,求滿足的所有正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在著名的漢諾塔問(wèn)題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標(biāo)柱.已知起始柱上套有個(gè)圓盤,較大的圓盤都在較小的圓盤下面.現(xiàn)把圓盤從起始柱全部移到目標(biāo)柱上,規(guī)則如下:每次只能移動(dòng)一個(gè)圓盤,且每次移動(dòng)后,每根柱上較大的圓盤不能放在較小的圓盤上面,規(guī)定一個(gè)圓盤從任一根柱上移動(dòng)到另一根柱上為一次移動(dòng).若將個(gè)圓盤從起始柱移動(dòng)到目標(biāo)柱上最少需要移動(dòng)的次數(shù)記為,則__________,__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)的定義域?yàn)?/span>,滿足對(duì)任意,,有,則稱為型函數(shù);若函數(shù)的定義域?yàn)?/span>,滿足對(duì)任意,恒成立,且對(duì)任意,,有,則稱為對(duì)數(shù)型函數(shù).
(1)當(dāng)函數(shù)時(shí),判斷是否為型函數(shù),并說(shuō)明理由.
(2)當(dāng)函數(shù)時(shí),證明:是對(duì)數(shù)型函數(shù).
(3)若函數(shù)是型函數(shù),且滿足對(duì)任意,有,問(wèn)是否為對(duì)數(shù)型函數(shù)?若是,加以證明;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測(cè)試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績(jī)抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號(hào).
(1)如果從第8行第7列的數(shù)開始向右讀,請(qǐng)你依次寫出最先檢查的3個(gè)人的編號(hào);
(下面摘取了第7行到第9行)
(2)抽取的100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚撼煽?jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向,縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?/span>.
①若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是,求的值:
②在地理成績(jī)及格的學(xué)生中,已知,求數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠的,,三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測(cè):
車間 | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來(lái)自,,各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測(cè),求這2件產(chǎn)品來(lái)自相同車間的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com