. (本小題共14分)

已知函數(shù),其中.

(Ⅰ)若b>2a,且的最大值為2,最小值為-4,試求函數(shù)f(x)的最小值;

(Ⅱ)若對任意實數(shù)x,不等式恒成立,且存在使得成立,求c的值.

f(x)的最小值為,c=1


解析:

由此可解得.………………………………………………………… 5分

b>2a , 且,  ∴ ,從而c =-2.

.

f(x)的最小值為.………………………………………………… 7分

(Ⅱ) 令x =1,代入,即.

            從而.            又由,得.

            因a > 0, 故.

            即, .  從而 .……………………  10分

            ∵ ,∴ , .

            又 , ∴ c =1或c =2.………………………………………… 12分

            當(dāng)c =2時,b=0, .此時不滿足.

            故c =2不符合題意,舍去.

            所以 c =1. ……………………………………………………………… 14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共14分)

      數(shù)列的前n項和為,點在直線

上.

   (I)求證:數(shù)列是等差數(shù)列;

   (II)若數(shù)列滿足,求數(shù)列的前n項和

   (III)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共14分)

如圖,四棱錐的底面是正方形,,點E在棱PB上。

(Ⅰ)求證:平面;

(Ⅱ)當(dāng)EPB的中點時,求AE與平面PDB所成的角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (2009北京理)(本小題共14分)

已知雙曲線的離心率為,右準(zhǔn)線方程為

(Ⅰ)求雙曲線的方程;

(Ⅱ)設(shè)直線是圓上動點處的切線,與雙曲線

于不同的兩點,證明的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題

(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD底面ABCD,PD=DC,點E是PC的中點,作EFPB交PB于點F

⑴求證:PA//平面EDB

⑵求證:PB平面EFD

⑶求二面角C-PB-D的大小

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市崇文區(qū)高三下學(xué)期二模數(shù)學(xué)(文)試題 題型:解答題

(本小題共14分)

正方體的棱長為,的交點,的中點.

(Ⅰ)求證:直線∥平面;

(Ⅱ)求證:平面

(Ⅲ)求三棱錐的體積.

 

查看答案和解析>>

同步練習(xí)冊答案