設(shè)函數(shù)f(x)=ex-e-x
(Ⅰ)證明:f(x)的導(dǎo)數(shù)f′(x)≥2;
(Ⅱ)若對所有x≥0都有f(x)≥ax,求a的取值范圍.
分析:(Ⅰ)先求出f(x)的導(dǎo)函數(shù),利用a+b≥2
ab
當(dāng)且僅當(dāng)a=b時(shí)取等號.得到f'(x)≥2;
(Ⅱ)把不等式變形令g(x)=f(x)-ax并求出導(dǎo)函數(shù)令其=0得到駐點(diǎn),在x≥0上求出a的取值范圍即可.
解答:解:(Ⅰ)f(x)的導(dǎo)數(shù)f'(x)=ex+e-x
由于ex+e-x≥2
exe-x
=2
,故f'(x)≥2.
(當(dāng)且僅當(dāng)x=0時(shí),等號成立).
(Ⅱ)令g(x)=f(x)-ax,則g'(x)=f'(x)-a=ex+e-x-a,
(ⅰ)若a≤2,當(dāng)x>0時(shí),g'(x)=ex+e-x-a>2-a≥0,
故g(x)在(0,+∞)上為增函數(shù),
所以,x≥0時(shí),g(x)≥g(0),即f(x)≥ax.
(ⅱ)若a>2,方程g'(x)=0的正根為x1=ln
a+
a2-4
2

此時(shí),若x∈(0,x1),則g'(x)<0,故g(x)在該區(qū)間為減函數(shù).
所以,x∈(0,x1)時(shí),g(x)<g(0)=0,即f(x)<ax,與題設(shè)f(x)≥ax相矛盾.
綜上,滿足條件的a的取值范圍是(-∞,2].
點(diǎn)評:考查學(xué)生利用導(dǎo)數(shù)運(yùn)算的能力,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex-1-x-ax2
(1)若a=0,求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x≥0時(shí)f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、設(shè)函數(shù)f(x)=ex[x2-(1+a)x+1](x∈R),
(I)若曲線y=f(x)在點(diǎn)P(0,f(0))處的切線與直線y=x+4平行.求a的值;
(II)求函數(shù)f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex+aex(x∈R)是奇函數(shù),則實(shí)數(shù)a=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex
(I)求證:f(x)≥ex;
(II)記曲線y=f(x)在點(diǎn)P(t,f(t))(其中t<0)處的切線為l,若l與x軸、y軸所圍成的三角形面積為S,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex(e為自然對數(shù)的底數(shù)),g(x)=x2-x,記h(x)=f(x)+g(x).
(1)h′(x)為h(x)的導(dǎo)函數(shù),判斷函數(shù)y=h′(x)的單調(diào)性,并加以證明;
(2)若函數(shù)y=|h(x)-a|-1=0有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案