(本題滿分12分)
已知平面//平面,AB、CD是夾在、間的兩條線段,A、C在內(nèi),B、D在內(nèi),點(diǎn)E、F分別在AB、CD上,且,求證:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在四棱錐中,,,平面,為的中點(diǎn),.
(Ⅰ)求四棱錐的體積;
(Ⅱ)若為的中點(diǎn),求證:平面平面;
(Ⅲ)求二面角的大小。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,四棱錐P--ABCD中,PB底面ABCD.底面ABCD為直角梯形,AD∥BC,AB=AD=PB=3,BC=6.點(diǎn)E在棱PA上,且PE=2EA.
(1)求異面直線PA與CD所成的角;
(2)求證:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖,在四面體PABC中,PA=PB,CA=CB,D、E、F、G分別是PA,AC、CB、BP的中點(diǎn).
(1)求證:D、E、F、G四點(diǎn)共面;
(2)求證:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面體PABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)如圖,在四棱錐中,底面是正方形,側(cè)棱底面,,是的中點(diǎn),作交于點(diǎn)
(1)證明:平面.
(2)證明:平面.
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體 中,為中點(diǎn).
(1)求證:;
(2)在棱上是否存在一點(diǎn),使得平面若存在,求的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E的棱AB上移動(dòng)。
(I)證明:D1EA1D;
(II)AE等于何值時(shí),二面角D1-EC-D的大小為。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖:在三棱錐中,已知點(diǎn)、、分別為棱、、的中點(diǎn).
(1)求證:∥平面;
(2)若,,求證:平面⊥平面.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com