(本小題滿分14分)
已知函數(shù),(e為自然對(duì)數(shù)的底數(shù))
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在上無零點(diǎn),求a的最小值;
(III)若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求a的取值范圍.
(Ⅰ)的單調(diào)減區(qū)間為單調(diào)增區(qū)間為
(Ⅱ)若函數(shù)上無零點(diǎn),則的最小值為
(III)當(dāng)時(shí),對(duì)任意給定的上總存在兩個(gè)不同的,使成立.
(I)當(dāng)a=1時(shí),解析式確定直接利用得到函數(shù)f(x)的增(減)區(qū)間.
(II)解本小題的關(guān)鍵是先確定上恒成立不可能,故要使函數(shù)上無零點(diǎn),只要對(duì)任意的恒成立,即對(duì)恒成立.
再構(gòu)造函數(shù)利用導(dǎo)數(shù)求l(x)的最大值即可.
(III)解本小題的突破口是當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),函數(shù) 單調(diào)遞減.
所以,函數(shù)當(dāng)時(shí),不合題意;再確定時(shí)的情況.
解:(Ⅰ)當(dāng)時(shí),
       
的單調(diào)減區(qū)間為單調(diào)增區(qū)間為         ………………………………4分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225708548521.png" style="vertical-align:middle;" />在上恒成立不可能,故要使函數(shù)上無零點(diǎn),
只要對(duì)任意的恒成立,即對(duì)恒成立.          
再令
上為減函數(shù),于是
從而,,于是上為增函數(shù)
故要使恒成立,只要
綜上,若函數(shù)上無零點(diǎn),則的最小值為……………………8分
(III)當(dāng)時(shí),函數(shù)單調(diào)遞增;
當(dāng)時(shí),函數(shù) 單調(diào)遞減
所以,函數(shù)當(dāng)時(shí),不合題意;
當(dāng)時(shí),  
故必需滿足  ①
此時(shí),當(dāng) 變化時(shí)的變化情況如下:






0
+

單調(diào)減
最小值
單調(diào)增

∴對(duì)任意給定的,在區(qū)間上總存在兩個(gè)不同的

 

 
使得成立,當(dāng)且僅當(dāng)滿足下列條件② ③

 
,得
當(dāng)時(shí), 函數(shù)單調(diào)遞增;當(dāng)時(shí),函數(shù)單調(diào)遞減.
所以,對(duì)任意即②對(duì)任意恒成立. 
由③式解得:    ④             
綜合①④可知,當(dāng)時(shí),對(duì)任意給定的上總存在兩個(gè)不同的,使成立.………………………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、(本小題滿分9分)已知函數(shù)處取得極值。(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)已知對(duì)任意成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),其中常數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值點(diǎn);
(Ⅱ)令,若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;
(Ⅲ)設(shè)定義在D上的函數(shù)在點(diǎn)處的切線方程為當(dāng)時(shí),若D內(nèi)恒成立,則稱P為函數(shù)的“特殊點(diǎn)”,請(qǐng)你探究當(dāng)時(shí),函數(shù)是否存在“特殊點(diǎn)”,若存在,請(qǐng)最少求出一個(gè)“特殊點(diǎn)”的橫坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知函數(shù)
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),設(shè),若存在,,使
求實(shí)數(shù)的取值范圍。為自然對(duì)數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、已知是函數(shù)的一個(gè)極值點(diǎn).
(Ⅰ)求;(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)若函數(shù)是定義域上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(2)求函數(shù)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),設(shè)的最小值為恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若處取得極值為,求的值;
(2)若上是增函數(shù),求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案