已知拋物線方程為,直線的方程為,在拋物線上有一動(dòng)點(diǎn)P到y(tǒng)軸的距離為,P到直線的距離為,則的最小值為(    )
A.B.C.D.
D

試題分析:如圖,可知拋物線焦點(diǎn)F(2,0),準(zhǔn)線為x=-1,根據(jù)拋物線的定義,∴d1+d2=PM+PN-1=PM+PF-1≥FM-1≥d-1,d為F到l的距離,d=,∴d1+d2的最小值為
 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知拋物線的焦點(diǎn)為,上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為時(shí),為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且有且只有一個(gè)公共點(diǎn)
(。┳C明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ⅱ)的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

【理科】雙曲線
x2
4
-y2
=1與直線y=kx+1有唯一公共點(diǎn),則k值為( 。
A.
2
2
B.-
2
2
C.±
2
2
D.±
2
2
或±
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,F(xiàn)為拋物線y2=4x的焦點(diǎn),A,B,C在拋物線上,若=0,則||+||+||=(  )
A.6B.4C.3 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知兩條拋物線,過原點(diǎn)的兩條直線,分別交于兩點(diǎn),分別交于兩點(diǎn).
(1)證明:
(2)過原點(diǎn)作直線(異于,)與分別交于兩點(diǎn).記的面積分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)點(diǎn)P是曲線y=x2上的一個(gè)動(dòng)點(diǎn),曲線y=x2在點(diǎn)P處的切線為l,過點(diǎn)P且與直線l垂直的直線與曲線y=x2的另一交點(diǎn)為Q,則PQ的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·江西模考]設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-2,則拋物線的方程是(  )
A.y2=-8xB.y2=8x
C.y2=-4xD.y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是拋物線為上的一點(diǎn),以S為圓心,r為半徑()做圓,分別交x軸于A,B兩點(diǎn),連結(jié)并延長SA、SB,分別交拋物線于C、D兩點(diǎn)。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負(fù)半軸于點(diǎn)E,若EC : ED =" 1" : 3,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)(0,1)作直線,使它與拋物線y2=4x僅有一個(gè)公共點(diǎn),這樣的直線有(  )
A.1條B.2條C.3條D.4條

查看答案和解析>>

同步練習(xí)冊(cè)答案