在數(shù)列中,其前項和為,滿足.
(1)求數(shù)列的通項公式;
(2)設(shè)為正整數(shù)),求數(shù)列的前項和.

(1) .(2).

解析試題分析:(1)根據(jù),計算  
驗證當時,,明確數(shù)列為首項、公差為的等差數(shù)列即得所求.
(2)由(1)知:  
利用“裂項相消法”、“錯位相減法”求和.
試題解析:(1)由題設(shè)得:,所以
所以       2分
時,,數(shù)列為首項、公差為的等差數(shù)列
.     5分
(2)由(1)知:                     6分

    9分
設(shè)

兩式相減得:
整理得:           11分
所以          12分
考點:等差數(shù)列的通項公式,“裂項相消法”,“錯位相減法”.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列{an}中,,,
(1)求數(shù)列的通項公式
(2)設(shè)),記數(shù)列的前k項和為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列中,,.
(1)求數(shù)列的通項公式; 
(2)若數(shù)列的前項和,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了保障幼兒園兒童的人身安全,國家計劃在甲、乙兩省試行政府規(guī)范購置校車方案,計劃若干時間內(nèi)(以月為單位)在兩省共新購1000輛校車.其中甲省采取的新購方案是:本月新購校車10輛,以后每月的新購量比上一月增加50%;乙省采取的新購方案是:本月新購校車40輛,計劃以后每月比上一月多新購m輛.
(1)求經(jīng)過n個月,兩省新購校車的總數(shù)S(n);
(2)若兩省計劃在3個月內(nèi)完成新購目標,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)無窮數(shù)列{an}滿足:?n∈Ν?,an<an+1,an∈N?.記bn=aan,cn=aan+1(n∈N*).
(1)若bn=3n(n∈N*),求證:a1=2,并求c1的值;
(2)若{cn}是公差為1的等差數(shù)列,問{an}是否為等差數(shù)列,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列{an}前三項之和為-3,前三項積為8.
(1)求等差數(shù)列{an}的通項公式;
(2)若a2,a3,a1成等比數(shù)列,求數(shù)列{|an|}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè){an}是公比不為1的等比數(shù)列,其前n項和為Sn,且a5,a3,a4成等差數(shù)列.
(1)求數(shù)列{an}的公比;
(2)證明:對任意k∈N,Sk+2,Sk,Sk+1成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足++…+=1-,n∈N* ,求{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

等差數(shù)列{an}中,a3=3,a1+a4=5.
(1)求數(shù)列{an}的通項公式;
(2)若bn,求數(shù)列{bn}的前n項和Sn.

查看答案和解析>>

同步練習冊答案