(本題滿分10分)

如圖,已知三棱錐OABC的側(cè)棱OA,OBOC兩兩垂直,且OA=2,OB=3,OC=4,EOC的中點(diǎn).

(1)求異面直線BEAC所成角的余弦值;

(2)求二面角ABEC的余弦值.

 

【答案】

(1) (2)

【解析】

試題分析:解:(I)以O為原點(diǎn),OB,OC,OA分別為x,yz軸建立空間直角坐標(biāo)系.

則有A(0,0,2),B(3,0,0),C(0,4,0),E(0,2,0).

 

所以,cos<>.          ……………………3分

由于異面直線BE與AC所成的角是銳角,

所以,異面直線BEAC所成角的余弦值是.      ……………………5分

(II),,

設(shè)平面ABE的法向量為,

則由,得

,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013040920124362508297/SYS201304092013360781627335_DA.files/image014.png">

所以平面BEC的一個(gè)法向量為n2=(0,0,1),

所以. ……………………8分

由于二面角ABEC的平面角是n1n2的夾角的補(bǔ)角,

所以,二面角ABEC的余弦值是.……………………10分

考點(diǎn):本試題考查了異面直線的角和二面角的求解。

點(diǎn)評(píng):對(duì)于角的求解問(wèn)題,一般分為三步進(jìn)行,一作,二證,三解答。因此要掌握角的表示,結(jié)合定義法和性質(zhì)來(lái)分析得到角,進(jìn)而求解,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 17.本題滿分10分已知函數(shù)的圖象在y軸上的截距為,相鄰的兩個(gè)最值點(diǎn)是(1)求函數(shù);(2)設(shè),問(wèn)將函數(shù)的圖像經(jīng)過(guò)怎樣的變換可以得到 的圖像?(3)畫(huà)出函數(shù)在區(qū)間上的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分10分)

(Ⅰ)設(shè),求證:

(Ⅱ)設(shè),求證:三數(shù),中至少有一個(gè)不小于2.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆河南省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分10分)

如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長(zhǎng)AB=2,側(cè)棱BB1的長(zhǎng)為4,過(guò)點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F,

⑴求證:A1C⊥平面BDE;

⑵求A1B與平面BDE所成角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣高三下學(xué)期期初測(cè)試數(shù)學(xué)試卷 題型:解答題

(本題滿分10分)

如圖,已知正三棱柱的所有棱長(zhǎng)都為2,為棱的中點(diǎn),

(1)求證:平面;

(2)求二面角的余弦值大小.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年遼寧省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本題滿分10分)

如圖,要計(jì)算西湖岸邊兩景點(diǎn)的距離,由于地形的限制,需要在岸上選取兩點(diǎn),現(xiàn)測(cè)得,,, ,,求兩景點(diǎn)的距離(精確到0.1km).參考數(shù)據(jù):  

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案