已知函數(shù).
(1)若,求證:當時,;
(2)若在區(qū)間上單調(diào)遞增,試求的取值范圍;
(3)求證:.

(1) 詳見解析;(2) 的取值范圍;(3)詳見解析.

解析試題分析:(1) 當時,求證:當時,,將代入,得,注意到,只要證明當時,單調(diào)遞增,則,由于中含有指數(shù)函數(shù),可對求導得,只需證明當時,即可,注意到,只要證明當時,單調(diào)遞增即可,因此令,對求導得,顯然當時,,問題得證;(2) 求實數(shù)的取值范圍,由于在區(qū)間上單調(diào)遞增,則當時,,故對求導得,即當時,恒成立,即)恒成立,只需求出的最小值即可,令,對求導得,令導數(shù)等于零,解出的值,從而的最小值,進而得實數(shù)的取值范圍;
(3)求證:,由(1) 知:當時,,即,可得,兩邊取對數(shù)得,令,得,再令,得個式子相加,然后利用放縮法可證得結(jié)論.
試題解析:(1) ,則h(x)=,∴h′(x)=ex-1>0(x>0),
∴h(x)=f′(x)在(0,+∞)上遞增,∴f′(x)>f′(0)=1>0,
∴f(x)=exx2在(0,+∞)上單調(diào)遞增,故f(x)>f(0)=1.(     4分)
(2) f′(x)=ex-2kx,下面求使 (x>0)恒成立的k的取值范圍.
若k≤0,顯然f′(x)>0,f(x)在區(qū)間(0,+∞)上單調(diào)遞增;
記φ(x)=ex-2kx,則φ′(x)=ex-2k,
當0<k<時,∵ex>e0=1, 2k<1,∴φ′ (x)>0,則φ(x)在(0,+∞)上單調(diào)遞增,
于是f′(x)=φ(x)>φ(0)=1>0,∴f(x)在(0,+∞)上單調(diào)遞增;
當k≥時,φ(x)=ex-2kx在(0,ln 2k)上單調(diào)遞減,在(ln 2k,+∞)上單調(diào)遞增,
于是f′(x)=φ(x)≥φ(ln 2k)=eln 2k-2kln 2k,
由eln 2k-2kln 2k≥0得2k-2kln 2k≥0,則≤k≤,
綜上,k的取值范圍為(-∞,].      9分
另解:(2) ,下面求使(x>0)恒成立的k的取值范圍.
)恒成立。記

上單調(diào)遞減,在

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

定義在R上的函數(shù)同時滿足以下條件:
在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
是偶函數(shù);
在x=0處的切線與直線y=x+2垂直.
(1)求函數(shù)的解析式;
(2)設(shè)g(x)=,若存在實數(shù)x∈[1,e],使g(x)<,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ln x+2x-6.
(1)證明:函數(shù)f(x)有且只有一個零點;
(2)求該零點所在的一個區(qū)間,使這個區(qū)間的長度不超過

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)=xln xg(x)=x3ax2x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[tt+2](t>0)上的最小值;
(3)對一切的x∈(0,+∞),2f(x)<g′(x)+2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)f(x)=(x+1)ln x-2x.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)當時,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù), 在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù), 若對于任意,總存在, 使得, 求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)求證:函數(shù)上單調(diào)遞增;
(Ⅱ)設(shè),若直線PQ∥x軸,求P,Q兩點間的最短距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若曲線處的切線互相平行,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

同步練習冊答案