精英家教網 > 高中數學 > 題目詳情

【題目】橢圓的離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切.

1)求橢圓的方程;

2MN是橢圓上關于x軸對稱的兩點,P是橢圓上不同于MN的一點,直線PMPNx軸于DxD,0ExE,0),證明:xDxE為定值.

【答案】(1);(2)證明見解析.

【解析】

1)由已知條件圓與直線相切,求出,再由離心率結合關系,即可求解;

(2)設Mx0y0),Nx0,﹣y0),PxPyP),求出直線PM,PN方程,進而求出坐標,結合點在橢圓上,即可證明結論.

1)由題意e,b1,

所以a

因此求橢圓的方程;

2)證明:設Mx0,y0),Nx0,﹣y0),PxP,yP),

則直線PMyy0xx0),

y0,得xDx0,

同理直線PNy+y0xx0),

xEx0,

所以xDxE=(x0x0,①

,

x0221y02),xP221yP2),代入① 整理得xDxE2

所以xDxE為定值2

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】甲、乙兩個排球隊在采用勝制排球決賽中相遇,已知每局比賽中甲獲勝的概率是.

1)求比賽進行了局就結束的概率;

2)若第局甲勝,兩隊又繼續(xù)進行了局結束比賽,求的分布列和數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數)的圖象為曲線

)求曲線上任意一點處的切線的斜率的取值范圍;

)若曲線上存在兩點處的切線互相垂直,求其中一條切線與曲線的切點的橫坐標的取值范圍;

)試問:是否存在一條直線與曲線C同時切于兩個不同點?如果存在,求出符合條件的所有直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為a,b,c,且(a+bc)(sinA+sinB+sinC)=bsinA

1)求C

2)若a2,c5,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】基于移動互聯技術的共享單車被稱為新四大發(fā)明之一,短時間內就風靡全國,帶給人們新的出行體驗,某共享單車運營公司的市場研究人員為了解公司的經營狀況,對該公司最近六個月的市場占有率進行了統(tǒng)計,結果如表:

月份

月份代碼x

1

2

3

4

5

6

y

11

13

16

15

20

21

請用相關系數說明能否用線性回歸模型擬合y與月份代碼x之間的關系,如果能,請計算出y關于x的線性回歸方程,并預測該公司201812月的市場占有率如果不能,請說明理由.

根據調研數據,公司決定再采購一批單車擴大市場,現有采購成本分別為1000輛和800輛的AB兩款車型,報廢年限各不相同考慮公司的經濟效益,該公司決定對兩款單車進行科學模擬測試,得到兩款單車使用壽命頻數表如表:

報廢年限

車型

1

2

3

4

總計

A

10

30

40

20

100

B

15

40

35

10

100

經測算,平均每輛單車每年可以為公司帶來收入500不考慮除采購成本以外的其他成本,假設每輛單車的使用壽命都是整數年,用頻率估計每輛車使用壽命的概率,分別以這100輛單車所產生的平均利潤作為決策依據,如果你是該公司的負責人,會選擇釆購哪款車型?

參考數據:,

參考公式:相關系數

回歸直線方程中的斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點.

1)若為線段上的動點,證明:平面平面;

2)若為線段,,上的動點(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在四棱錐中,,,的中點,是等邊三角形,平面平面.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直線l的參數方程為t為參數),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ4acosθ,直線l與曲線C交于不同的兩點M,N

1)求實數a的取值范圍;

2)已知a0,設點P(﹣1,﹣2),若|PM|,|MN|,|PN|成等比數列,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年國際乒聯總決賽在韓國仁川舉行,比賽時間為12131216日,在男子單打項目,中國隊準備選派4人參加.已知國家一線隊共6名隊員,二線隊共4名隊員.

1)求恰好有3名國家一線隊隊員參加比賽的概率;

2)設隨機變量X表示參加比賽的國家二線隊隊員的人數,求X的分布列;

3)男子單打決賽是林高遠(中國)對陣張本智和(日本),比賽采用七局四勝制,已知在每局比賽中,林高遠獲勝的概率為,張本智和獲勝的概率為,前兩局比賽雙方各勝一局,且各局比賽的結果相互獨立,求林高遠獲得男子單打冠軍的概率.

查看答案和解析>>

同步練習冊答案