函數(shù)的定義域?yàn)镈,若存在閉區(qū)間[a,b]D,使得函數(shù)滿足:(1)在[a,b]內(nèi)是單調(diào)函數(shù);(2)在[a,b]上的值域?yàn)閇2a,2b],則稱區(qū)間[a,b]為y=的“美麗區(qū)間”.下列函數(shù)中存在“美麗區(qū)間”的是 . (只需填符合題意的函數(shù)序號(hào))
①、; ②、;
③、; ④、.
①③④
【解析】
試題分析:函數(shù)中存在“美麗區(qū)間”的定義可知:①在[a,b]內(nèi)是單調(diào)增函數(shù);
則,解得∴f(x)=x2(x≥0),若存在“美麗區(qū)間”[0,2],∴f(x)=x2(x≥0),若存在“美麗區(qū)間”[0,2];②f(x)=ex(x∈R),若存在“美麗區(qū)間”[a,b],則,所以,構(gòu)建函數(shù)g(x)=ex-2x,∴g′(x)=ex-2,∴函數(shù)在(-∞,ln2)上單調(diào)減,在(ln2,+∞)上單調(diào)增,∴函數(shù)在x=ln2處取得極小值,且為最小值.∵g(ln2)=2-2ln2>0,∴g(x)>0恒成立,∴ex-2x=0無(wú)解,故函數(shù)不存在“美麗區(qū)間”;③在上單調(diào)遞減,若存在“美麗區(qū)間”[a,b],則,則,故存在;④,,若存在“倍值區(qū)間”[a,b]⊆[0,1],則∴a=0,b=1,若存在“美麗區(qū)間”[0,1];故存在“美麗區(qū)間”的是①③④.
考點(diǎn):1.函數(shù)的值域 ;2.函數(shù)的單調(diào)性
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
a |
2 |
b |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
函數(shù)的定義域?yàn)镈,若滿足①在D內(nèi)是單調(diào)函數(shù),②存在使在上的值域?yàn)?IMG height=41 src='http://thumb.zyjl.cn/pic1/img/20090715/20090715112554004.gif' width=65>,那么就稱為“好函數(shù)”,F(xiàn)有 是“好函數(shù)”,則的取值范圍是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三11月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)的定義域?yàn)镈,若對(duì)于任意,當(dāng)時(shí),都有,則稱函數(shù)在D上為非減函數(shù),設(shè)函數(shù)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:①;②;③.則等于( )
A. B. C. D.無(wú)法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省揭陽(yáng)市高三3月第一次高考模擬理科數(shù)學(xué)試卷(解析版) 題型:填空題
函數(shù)的定義域?yàn)镈,若對(duì)任意的、,當(dāng)時(shí),都有,則稱函數(shù)在D上為“非減函數(shù)”.設(shè)函數(shù)在上為“非減函數(shù)”,且滿足以下三個(gè)條件:(1);(2);(3),則 、 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com