【題目】在一次飛機(jī)航程中,調(diào)查男女暈機(jī)情況,在80名男乘客中有10人暈機(jī),70人不暈機(jī).在30名女乘客中有10人暈機(jī),20人不暈機(jī)
(1)請(qǐng)根據(jù)題設(shè)數(shù)據(jù)列出列聯(lián)表
暈機(jī) | 不暈機(jī) | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
(2)是否有把握認(rèn)為“是否暈機(jī)與性別有關(guān)”.
附:
0.050 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
【答案】(1)解答見解析(2)有的把握認(rèn)為“是否暈機(jī)與性別有關(guān)”.
【解析】
(1)根據(jù)在80名男乘客中有10人暈機(jī),70人不暈機(jī),在30名女乘客中有10人暈機(jī),20人不暈機(jī),即可得出的列聯(lián)表;
(2)由(1)中的的列聯(lián)表中的數(shù)據(jù),計(jì)算求得的值,結(jié)合附表,即可得到結(jié)論.
(1)根據(jù)在80名男乘客中有10人暈機(jī),70人不暈機(jī),在30名女乘客中有10人暈機(jī),20人不暈機(jī),可得如下的列聯(lián)表:
暈機(jī) | 不暈機(jī) | 總計(jì) | |
男 | 10 | 70 | 80 |
女 | 10 | 20 | 30 |
總計(jì) | 20 | 90 | 110 |
(2)由(1)中的的列聯(lián)表中的數(shù)據(jù),
可得
故有的把握認(rèn)為“是否暈機(jī)與性別有關(guān)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點(diǎn).
(1)求證:AE⊥B1C;
(2)求異面直線AE與A1C所成的角的大;
(3)若G為C1C中點(diǎn),求二面角C-AG-E的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表提供了某廠經(jīng)過(guò)節(jié)能降耗技術(shù)改進(jìn)后生產(chǎn)甲產(chǎn)品x噸與相應(yīng)的生產(chǎn)耗能y噸間的幾組數(shù)據(jù)
(1)試畫出此表中數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖 ;
(2)若變量y與x線性相關(guān) ,試求出線性回歸方程y = b x + a ;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)耗能為90噸標(biāo)準(zhǔn)煤 ,試根據(jù)(2)求出的線性回歸方程 ,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)耗能比技改前降低多少噸標(biāo)準(zhǔn)煤?
(參考公式,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一放假期間高速公路免費(fèi)是讓實(shí)惠給老百姓,但也容易造成交通堵塞.在某高速公路上的某時(shí)間段內(nèi)車流量(單位:千輛/小時(shí))與汽車的平均速度(單位:千米/小時(shí))之間滿足的函數(shù)關(guān)系(為常數(shù)),當(dāng)汽車的平均速度為千米/小時(shí)時(shí),車流量為千輛/小時(shí).
(1)在該時(shí)間段內(nèi),當(dāng)汽車的平均速度為多少時(shí)車流量達(dá)到最大值?
(2)為保證在該時(shí)間段內(nèi)車流量至少為千輛/小時(shí),則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究機(jī)構(gòu)對(duì)某校高二文科學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù).
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)試根據(jù)(2)中求出的線性回歸方程,預(yù)測(cè)記憶力為14的學(xué)生的判斷力.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)人上臺(tái)階可以一次上1級(jí)臺(tái)階,也可以一次上3級(jí)臺(tái)階,或者一次上4級(jí)臺(tái)階.若這個(gè)人上級(jí)臺(tái)階總共有種走法,證明為平方數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】證明:任何一個(gè)正方形均可分割成個(gè)全等的非矩形圖形,其中,、為互不相等的素?cái)?shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型超市在2018年元旦舉辦了一次抽獎(jiǎng)活動(dòng),抽獎(jiǎng)箱里放有2個(gè)紅球,1個(gè)黃球和1個(gè)藍(lán)球(這些小球除顏色外大小形狀完全相同),從中隨機(jī)一次性取2個(gè)小球,每位顧客每次抽完獎(jiǎng)后將球放回抽獎(jiǎng)箱.活動(dòng)另附說(shuō)明如下:
①凡購(gòu)物滿100(含100)元者,憑購(gòu)物打印憑條可獲得一次抽獎(jiǎng)機(jī)會(huì);
②凡購(gòu)物滿188(含188)元者,憑購(gòu)物打印憑條可獲得兩次抽獎(jiǎng)機(jī)會(huì);
③若取得的2個(gè)小球都是紅球,則該顧客中得一等獎(jiǎng),獎(jiǎng)金是一個(gè)10元的紅包;
④若取得的2個(gè)小球都不是紅球,則該顧客中得二等獎(jiǎng),獎(jiǎng)金是一個(gè)5元的紅包;
⑤若取得的2個(gè)小球只有1個(gè)紅球,則該顧客中得三等獎(jiǎng),獎(jiǎng)金是一個(gè)2元的紅包.
抽獎(jiǎng)活動(dòng)的組織者記錄了該超市前20位顧客的購(gòu)物消費(fèi)數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.
(1)求這20位顧客中獲得抽獎(jiǎng)機(jī)會(huì)的人數(shù)與抽獎(jiǎng)總次數(shù)(假定每位獲得抽獎(jiǎng)機(jī)會(huì)的顧客都會(huì)去抽獎(jiǎng));
(2)求這20位顧客中獎(jiǎng)得抽獎(jiǎng)機(jī)會(huì)的顧客的購(gòu)物消費(fèi)數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);
(3)分別求在一次抽獎(jiǎng)中獲得紅包獎(jiǎng)金10元,5元,2元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD⊥平面ABCD,,∠BAD=∠CDA=90°,.
(1)求證:平面PAD⊥平面PBC;
(2)求直線PB與平面PAD所成的角;
(3)在棱PC上是否存在一點(diǎn)E使得直線平面PAD,若存在求PE的長(zhǎng),并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com