【題目】已知正方體(如圖),則(

A.直線CFGD所成的角與向量所成的角相等

B.向量是平面ACH的法向量

C.直線CE與平面ACH所成角的正弦值與的平方和等于1

D.二面角的余弦值等于

【答案】B

【解析】

D為原點,建立空間直角坐標系,利用坐標法依次對所給選項進行檢驗.

D為原點,建立如圖所示的空間直角坐標系,設正方體棱長為1,則

,

對于選項A,連接,因為為等邊三角形,所以異面直線CFGD所成

的角為,而,所以

,所以,故A錯誤;

對于選項B,,,

,所以

,,即,又,所以

平面,所以向量是平面ACH的法向量,故B正確;

對于選項C,設直線CE與平面ACH所成角為,

所以,所以,故C錯誤;

對于選項D,連接,設,連接,

因為,M為中點,所以,

所以的二面角,易得,

,所以,

所以D錯誤.

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一商場對5年來春節(jié)期間服裝類商品的優(yōu)惠金額(單位:萬元)與銷售額(單位:萬元)之間的關系進行分析研究并做了記錄,得到如下表格.

日期

2014

2015

2016

2017

2018

2

4

5

6

8

30

40

60

50

70

(1)畫出散點圖,并判斷服裝類商品的優(yōu)惠金額與銷售額是正相關還是負相關;

(2)根據(jù)表中提供的數(shù)據(jù),求出的回歸方程;

(3)若2019年春節(jié)期間商場預定的服裝類商品的優(yōu)惠金額為10萬元,估計該商場服裝類商品的銷售額.

參考公式:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某單位的職工食堂中,食堂每天以3/個的價格從面包店購進面包,然后以5/個的價格出售.如果當天賣不完,剩下的面包以1/個的價格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了80個面包,以x(單位:個,)表示面包的需求量,T(單位:元)表示利潤.

1)求食堂面包需求量的平均數(shù);

2)求T關于x的函數(shù)解析式;

3)根據(jù)直方圖估計利潤T不少于100元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為的四個頂點圍成的四邊形面積為

1)求的方程;

2)過的右焦點,且斜率不為0的直線交于兩點,線段的垂直平分線經過點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)

一個盒子中裝有4張卡片,每張卡片上寫有1個數(shù)字,數(shù)字分別是12、3、4,現(xiàn)從盒子中隨機抽取卡片.

(Ⅰ)若一次從中隨機抽取3張卡片,求3張卡片上數(shù)字之和大于或等于7的概率;

(Ⅱ)若第一次隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字2的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學高二年級的甲、乙兩個班中,需根據(jù)某次數(shù)學預賽成績選出某班的5名學生參加數(shù)學競賽決賽,已知這次預賽他們取得的成績的莖葉圖如圖所示,其中甲班5名學生成績的平均分是83,乙班5名學生成績的中位數(shù)是86

1)求出x,y的值,且分別求甲、乙兩個班中5名學生成績的方差,并根據(jù)結

果,你認為應該選派哪一個班的學生參加決賽?

2)從成績在85分及以上的學生中隨機抽取2名.求至少有1名來自甲班的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】綠水青山就是金山銀山的生態(tài)文明發(fā)展理念已經深入人心,這將推動新能源汽車產業(yè)的迅速發(fā)展.下表是2019年我國某地區(qū)新能源乘用車的前5個月銷售量與月份的統(tǒng)計表:

月份代碼

1

2

3

4

5

銷售量(萬輛)

0.5

0.6

1

1.4

1.5

1)利用線性相關系數(shù)判斷的線性相關性,并求出線性回歸方程

2)根據(jù)線性回歸方程預報20196月份的銷售量約為多少萬輛?

參考公式:,;回歸直線:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓

(1)若橢圓的離心率為,求的值;

(2)若過點任作一條直線與橢圓交于不同的兩點,在軸上是否存在點,使得, 若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市有4個郊縣(、),如圖.現(xiàn)有5種顏色,問有多少種不同的著色方法,使得相鄰兩塊不同色,且每塊只涂一種顏色?

查看答案和解析>>

同步練習冊答案