精英家教網 > 高中數學 > 題目詳情
設A(x1,y1),B(x2,y2)是橢圓
x2
b2
+
y2
a2
=1
,(a>b>0)上的兩點,已知向量
m
=(
x1
b
,
y1
a
),
n
=(
x2
b
,
y2
a
),且
m
n
=0
,若橢圓的離心率e=
3
2
,短軸長為2,O為坐標原點:
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線AB過橢圓的焦點F(0,c),(c為半焦距),求直線AB的斜率k的值;
(Ⅲ)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
分析:(Ⅰ)根據題意可求得b,進而根據離心率求得a和c,則橢圓的方程可得.
(Ⅱ)設出直線AB的方程,與橢圓方程聯(lián)立消去y,表示出x1+x2和x1x2,利用
m
n
建立方程求得k.
(Ⅲ)先看當直線的斜率不存在時,可推斷出x1=x2,y1=-y2,根據
m
n
=0求得x1和y1的關系式,代入橢圓的方程求得|x1|和|y1|求得三角形的面積;再看當直線斜率存在時,設出直線AB的方程,與橢圓方程聯(lián)立,利用韋達定理表示出x1+x2和x1x2,利用
m
n
=0求得2b2-k2=4,最后利用弦長公式和三角形面積公式求得答案.
解答:解:(Ⅰ)2b=2.b=1,e=
c
a
=
a2-b2
a
=
3
2
?a=2,c=
3

橢圓的方程為
y2
4
+x2=1

(Ⅱ)由題意,設AB的方程為y=kx+
3
y=kx+
3
y2
4
+x2=1
?(k2+4)x2+2
3
kx-1=0

x1+x2=
-2
3
k
k2+4
x1x2=
-1
k2+4

由已知
m
n
=0得:
x1x2
b2
+
y1y2
a2
=x1x2+
1
4
(kx1+
3
)(kx2+
3
)

=(1+
k2
4
)x1x2+
3
k
4
(x1+x2)+
3
4

k2+4
4
(-
1
k2+4
)+
3
k
4
-2
3
k
k2+4
+
3
4
=0
,解得k=±
2

(Ⅲ)(1)當直線AB斜率不存在時,即x1=x2,y1=-y2,
m
n
=0,則x12-
y12
4
=0?y12=4x12

又A(x1,y1)在橢圓上,所以x12+
4x12
4
=1?|x1|=
2
2
,|y1|=
2

S=
1
2
|x1||y1-y2|=
1
2
|x1|2|y1|=1

所以三角形的面積為定值
(2)當直線AB斜率存在時,設AB的方程為y=kx+b
y=kx+b
y2
4
+x2=1
?(k2+4)x2+2kbx+b2-4=0

得到x1+x2=
-2kb
k2+4
x1x2=
b2-4
k2+4

x1x2+
y1y2
4
=0?x1x2+
(kx1+b)(kx2+b)
4
=0
代入整理得:
2b2-k2=4
S=
1
2
|b|
1+k2
|AB|=
1
2
|b|
(x1+x2)2-4x1x2
=
|b|
4k2-4b2+16
k2+4
=
4b2
2|b|
=1

所以三角形的面積為定值
點評:本題主要考查了直線與圓錐曲線的綜合問題.設直線方程的時候,一定要考慮斜率不存在時的情況,以免有所遺漏.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知拋物線C:x2=4y的焦點為F,直線l過點F交拋物線C于A、B兩點.
(Ⅰ)設A(x1,y1),B(x2,y2),求
1
y1
+
1
y2
的取值范圍;
(Ⅱ)是否存在定點Q,使得無論AB怎樣運動都有∠AQF=∠BQF?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

設A(x1,y1),B(x2,y2)是函數f(x)=
1
2
+log2
x
1-x
的圖象上兩點,且
OM
=
1
2
(
OA
+
OB
)
,O為坐標原點,已知點M的橫坐標為
1
2

(Ⅰ)求證:點M的縱坐標為定值;
(Ⅱ)定義定義Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011
(Ⅲ)對于(Ⅱ)中的Sn,設an=
1
2Sn+1
(n∈N*)
.若對于任意n∈N*,不等式kan3-3an2+1>0恒成立,試求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設A(x1,y1),B(x2,y2)是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
上的兩點,已知O為坐標原點,橢圓的離心率e=
3
2
,短軸長為2,且
m
=(
x1
b
,
y1
a
),
n
=(
x2
b
,
y2
a
)
,若
m
n
=0

(Ⅰ)求橢圓的方程;
(Ⅱ)若直線AB過橢圓的焦點F(0,c)(c為半焦距),求△AOB的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

設A(x1,y1),B(x2,y2)是函數f(x)=
1
2
+log2
x
1-x
圖象上任意兩點,且
OM
=
1
2
OA
+
OB
),已知點M的橫坐標為
1
2
,且有Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
),其中n∈N*且n≥2,
(1)求點M的縱坐標值;
(2)求s2,s3,s4及Sn;
(3)已知an=
1
(Sn+1)(Sn+1+1)
,其中n∈N*,且Tn為數列{an}的前n項和,若Tn≤λ(Sn+1+1)對一切n∈N*都成立,試求λ的最小正整數值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設A(x1,y1)、B(x2,y2)、C(x3,y3)是拋物線y=x2上的三個動點,其中x3>x2≥0,△ABC是以B為直角頂點的等腰直角三角形.
(1)求證:直線BC的斜率等于x2+x3,也等于
x2-x1x3-x2

(2)求A、C兩點之間距離的最小值.

查看答案和解析>>

同步練習冊答案