求曲線y=x3+x-2與直線y=4x+3平行的切線方程.

分析:設(shè)出切點(diǎn)坐標(biāo)(x0,y0),令f′(x0)=4,求出x0、y0,然后由點(diǎn)斜式求切線方程.

解:設(shè)切點(diǎn)為P0(x0,y0),則y0=x03+x0-2.①

又y′=3x2+1,切線斜率k=4,所以3x02+1=4.②

由①②,得∴切線方程為y=4x或y=4x-4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P在曲線y=x3-x+
23
上移動(dòng),設(shè)點(diǎn)P處切線的傾斜角為α,求α的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16、已知曲線 y=x3+x-3 在點(diǎn) P0處的切線l1 平行直線4x-y-1=0,且點(diǎn) P0在第三象限.
(1)求P0的坐標(biāo);
(2)若直線y=4x+a與曲線y=x3+x-3有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3-3x2,直線l:y=-2x
(1)求曲線C與直線l圍成的區(qū)域的面積;
(2)求曲線y=x3-3x2(0≤x≤1)與直線l圍成的圖形繞x軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x3+x+1
(1)求曲線在點(diǎn)P(1,3)處的切線方程.
(2)求曲線過點(diǎn)P(1,3)的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案